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ABSTRACT
The study of viability kernels can be of critical importance for

the verification of control systems. A viability kernel over a

set of safe states is the set of initial states for which the trajec-

tory can be controlled so as to stay within the safe set for an

indefinite amount of time. This paper investigates improve-

ments of the rigorous method from Monnet et al. [19, 20].
This method computes an inner-approximation of the vi-

ability kernel of a continuous time control system using

methods based on interval analysis. It consists of two phases:

first an initial inner-approximation of the viability kernel

is computed via Lyapunov-like functions; second the initial

inner-approximation is improved by finding other states that

can reach the inner-approximation, without exiting the safe

set, using validated numerical integration. Among the im-

provements, we discuss an approach inspired by an interval

method using barrier functions for computing a good ini-

tial inner-approximation of the viability kernel, easing the

improvement phase.
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1 INTRODUCTION
The viability theory aims at studying the evolution of con-

trolled dynamics occurring in many domains (e.g., in chem-

istry, biology or physics). The main focus on viability the-

ory [3] is the computation of the viability kernel of controlled

dynamics that is the subset of initial states such that there

exists at least one evolution of the system viable in this sub-

set.

The viability kernel helps to identify critical states of the

system for which there are no known control for avoiding

unsafe states, or states for which it is possible to evolve

inside a safe set for indefinite amount of time. We can iden-

tify different approaches from the literature that either ap-

proximate the viability kernel [7, 22, 27], or propose a val-

idated outer and/or inner-approximation of it [14, 16, 28].

In this paper, we focus on a recently proposed approach

by Monnet et al. [19, 20] for computing validated inner-

approximation
1
of the viability kernel by means of a two

phase interval based approach. We study in particular im-

provements of the first phase which aims at computing an ini-

tial inner-approximation of the viability kernel via Lyapunov-

like functions. The second phase improves the initial inner-

approximation through the computation of a capture basin

of the sets obtained in the first phase. Our goal is then to

develop a new technique that improves the result of the first

phase to ease the computational burden of the second phase.

Related work. When considering low dimensional systems,

many methods from the literature embrace a discretization

of the state space by a grid, see e.g. [7, 22, 27]. Reasoning on

such grid makes the problem of computing a viability ker-

nel more tractable while remaining accurate. They usually

fail to provide strict guarantees on the numerical computa-

tions. However, some approaches have proposed validated

computations of inner-approximation of viability kernel via

discretization/abstraction. In [10], approximate bisimilar ab-

stractions of systems is used to derive safe control laws that

constrain every trajectories inside a domain. Building such

abstractions require additional stability assumptions on the

system, and continuous time systems require time discretiza-

tion. Validations can then only occur on the initial and final

1
Outer-approximations can also be obtained using [19, 20] but this is not

covered in this paper.
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states of the concrete abstracted system at each time step,

and not on the trajectory itself. In [26], the notion of feed-

back refinement controller is used for building a controller

on abstracted systems, via discretization by means of hyper-

intervals and outer-approximations, that meets the specifi-

cation of the concrete system. Again, the time is discretized

and viability conditions are only checked at the end of each

steps.

The approach from [20] which we follow can be viewed

as a rigorous version of griding approaches. The state space

is decomposed into a paving with boxes (cartesian product

of intervals), for which validated numerical techniques are

further applied to decide whether a box belongs to the via-

bility kernel of the system. Validated numerical integration

is used to build tubes enclosing all trajectories starting from

a box, which in turn can be used to detect collision with the

boundary of the set of safe states.

For higher-dimensional problems, several alternatives have

been proposed. We can note Lagrangian methods like [14]

for linear systems, in which a piece-wise ellipsoidal rigor-

ous approximation of the viability kernel is computed. The

method is however limited to linear systems and only a finite

time horizon is considered for the computed viability ker-

nel. For polynomial systems, the approach proposed in [28]

consists in building sequence of Lyapunov-like polynomial

functions. They are based on relaxations of the problem of

satisfying Lyapunov-like conditions by means of sum of

square polynomials, written as Bilinear Matrix Inequality

problems. Contrary to our present work, the authors did not

consider any input for the system.

In [16] the authors proposed an approach for computing

maximal controlled invariant sets (equivalent to the notion

of viability kernel) within a semi-algebraic set for controlled

polynomial systems. The problem is written as an infinite

dimensional linear program solved by a hierarchy of linear

matrix inequality problems. Although presented for discrete-

time system, the method can be extended to continuous sys-

tems. Apart from the limitations to polynomial systems, both

state and input space must be in the form of a conjunction

of algebraic inequalities. The method we follow [20] and im-

prove in this paper can consider a broader type of constraints

for the state space. The method from [16] is nevertheless

a possibly complementary approach to ours, in particular

for the first phase of the algorithm we are improving in this

paper.

Eventually, on interval-based approaches, the work from

[11] proposes to tackle a specific class of Exist-ForAll quanti-

fied constraint systems. The problemwe need to solve for the

first phase of the method described in this paper differs but

almost falls into this class of quantified constraint systems.

2 BACKGROUND
2.1 Problem formulation
In this paper, we consider the computation of the viability

kernel [3] of controllable dynamical systems of the form

(S )



ẋ = f (x, u)
x(0) = x0

(1)

with f : Rn × Rm → Rn a non-linear globally Lipschitz

continuous function, for all t > 0, u(t ) ∈ U ⊆ Rm the input

and x(t ) ∈ Rn the state. For simplification, we will denote

u ∈ U instead of u(t ) ∈ U ,∀t .
For a given function h(.) : Rn → R, its time derivative

with respect to the system (1) is denoted by:

˙h(x, u) := ⟨∇h(x), f (x, u)⟩, (2)

where ∇h(x) denotes the gradient of h and ⟨., .⟩ the standard
inner product of two vectors. The time derivative is also

often called Lie derivative.
For a system such as (1), the viability kernel of a setK ∈ Rn

corresponds to the set ViabS (K ) such that

ViabS (K ) =
{
x0 ∈ K |∃u ∈ U ,∀t ⩾ 0,φ (x0, u, t ) ∈ K

}
, (3)

with φ : Rn ×U × R+ → Rn , the solution operator of (1) i.e.
the function such that φ (x0, u, t ) is the value of x(t ) when
x(0) = x0 and the control u is applied. The viability kernel is

here considered for an unbounded time (t ∈ [0,+∞[).We will

assume that K is bounded, closed, and defined by a boolean

combination (conjunction and disjunction) of inequalities.

The basis of the method from Monnet et al. [20] uses
another notion from viability theory that is the capture basin.

The capture basin of a set T , viable in K in a bounded time

horizon tend, denoted Capt
tend
S (K ,T ) is given by the following:

Capt
tend
S (K ,T ) =



x0 ∈ K

��������

∃t̃ ∈ [0, tend] ,∃ũ ∈ U ,
φ (x0, ũ, t̃ ) ∈ T

∧∀t ∈
[
0, t̃

]
,φ (x0, ũ, t ) ∈ K



.

(4)

This capture basin is the set of initial conditions in K for

which there exist an evolution that allow in the bounded

time tend to reach a given target T while remaining in K .
The following proposition links capture basin to viability

kernels.

Proposition 2.1. Given a set T ⊆ ViabS (K ), then

Capt
tend
S (K ,T ) ⊆ ViabS (K ), ∀tend ≥ 0. (5)

In other words, the (finite-time horizon) capture basin of

any subset of the viability kernel is also part of the viability

kernel. Proposition 2.1 is used in [20] to produce iteratively

an inner-approximation of the viability kernel ViabS (K ).
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2.2 Interval analysis
Interval analysis (IA) is a branch of numerical analysis born

in the 60s [21]. The key idea of interval analysis is to replace

real (in practice floating point number) computations by

interval ones that always contain the correct result. It can

be used for both monitoring numerical rounding errors and

set computations with applications in Global optimization

and Constraint Programming. We refer to [13, 15, 24] for a

broad overview of IA.

An interval [x] = [x ,x] ⊂ R is a closed subset of reals

defined by a lower bound x ∈ R and upper bound x ∈ R
such that x ⩽ x . We denote by IR the set of all intervals of

reals. A n-dimensional box [x] is a cartesian product of n
intervals ([x])1≤i≤n , defined by a lower and an upper bound

vector x and x. Given an interval [x], mid[x] := 0.5(x + x )
is its center, wid[x] := x − x is its width. The width of a box

is the maximum of its component-wise widths.

An interval extension [f ] : IRn → IR of a function f :

Rn → R is an interval function satisfying the containment

principle, i.e. f ([x]) := { f (x) : x ∈ [x]} ⊆ [f ] ([x]) for any
box [x] ∈ IRn . The natural extension [f ] of f , which will

be considered as the default interval extension in the paper,

consists in replacing all arithmetic and unary operations in

the function f by their interval arithmetic counterparts (each

satisfying the containment principle).

A contractor [6] Cc : IRn → IRn , where c is a real arith-
metic property g(x) ⊆ A with g : Rn → Rk and A ⊂ Rk ,
is an interval operation such that ∀ [x] ∈ IRn , Cc ([x]) ⊆ [x]
and g([x])∩A = g(Cc ([x]))∩A. As a consequence, for any

x ∈ [x] \Cc ([x]), then g(x) < A. Contractors are useful for

reducing boxes toward the solutions to constraint systems.

Eventually, consider a system of equation h(x) = 0, with
h : Rn → Rk and k ≤ n. Consider also a partition of the

vector x = (y, z) with y ∈ Rm and z ∈ Rk (m = n − k),
and the analogous partition for boxes in IRn . A (paramet-

ric) interval Newton operator N : IRm × IRk → IRk is

an operator satisfying: ∀z ∈ [z] , (∃y ∈ [y] , h(y, z) =
0) =⇒ z ∈ N ([y] , [z]), and N ([y] , [z]) ⊂ [z] =⇒ ∀y ∈
[y] , ∃z ∈ [z] , h(y, z) = 0. Well known interval operator

are the Hansen-Sengupta and the Krawczyk operator [24].

Generally used as a contractor, an interval Newton operator

can also be used for the search of a certified enclosure of so-

lutions to a system of equations when coupled with inflation

techniques, see e.g. [12].

2.3 Validated numerical integration
Validated numerical integration is designed to produce rigor-

ous results on the solution of Initial Value Problem with Or-

dinary Differential Equations (IVP-ODES). Most techniques,

since Ramon Moore’s seminal work [21], are based on Taylor

series [23]. More recent work [4, 5, 9, 17, 18] deals with the

a priori enclosure

tighter approximation

t
end

time

s
t
a
t
e

Figure 1: The two steps of a validated numerical inte-
gration.

adaptation of Runge Kutta methods for ODES and Differen-

tial Algebraic Equations, see [2].

Validated numerical integration is a two step procedure:

a priori enclosure on a time interval [0, tend] and a tighter

approximation at a given time tend (see Figure 1). Consid-

ering the system (S ) from (1), validated numerical integra-

tion methods produce an outer-approximation of the set

{φ (x0, u, tend) | x0 ∈ [x0] , u ∈ U}, the set of values x(tend)
can take when considering x(0) ∈ [x0] and u ∈ U . It allows

also to produce an outer-approximation of {φ (x0, u, t ) | x0 ∈
[x0] , u ∈ U , t ∈ [0, tend]} representing the set of all trajec-
tories starting in [x0], u ∈ U and finishing at time tend.

3 MAIN RESULTS
In this paper, we consider the general framework from Mon-

net et al. [20] and investigate improvements of this interval

based approach. First, we use interval methods to compute

barrier-like functions as in [8], which generalize the first

stage of the algorithm. The aim is to provide an initial inner-

approximation of ViabS (K ) that is as large as possible in

order to ease the improvement phase.

3.1 First inner approximation
The original approach based on Lyapunov-like functions

for computing the initial inner-approximation of the via-

bility kernel in [20] has the advantage of being simple and

fast. However, it does not focus on finding an initial inner-

approximation that is as large as possible. Taking more time

computing a larger inner-approximation is relevant for im-

proving the second phase of the method which can be very

time consuming. A better trade-off can hence be gained by

taking more time computing a better inner-approximation

during the first-phase.

Controlled barrier functions. As in [20], we want to com-

pute a continuously differentiable function satisfying the
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following properties:

∀x ∈ K (∃u ∈ U , h(x) = 0 =⇒ ˙h(x, u) < 0) (6)

∧ (x ∈ ∂K =⇒ h(x) > 0) (7)

where ∂K denotes the boundary of K . The condition (7),

not present in [20], implies that the set H := {x|h(x) ≤
0} ∩ K ⊂ int K - where int K denotes the interior of K - and

hence that the condition (6) is actually a valid (controlled)

barrier certificate of H provided it is not empty. In other

words, for any initial condition x0 ∈ H , there is always a

control leading the evolution to remain inH , which further

implies thatH ⊆ ViabS (K ). We can also see the function h
as a Lyapunov-like function for which we have leveraging

positiveness and restricted the decrease of h on the boundary

ofH .

Proposition 3.1. Given a function h that satisfies (6) and
(7), then the setH := {x|h(x) ≤ 0}∩K is included in ViabS (K ).

Proof. Suppose the non-trivial caseH . From (7), we have

that H is included in int K . Since K is bounded, so is H .

Finally, since h is continuous then H is closed. Theorem

3.1 from [20] can then be applied as (6) is equivalent to the

notion of V -viability defined in [20]. This theorem entails

thatH ⊆ ViabS (K ). □

In [20], convex quadratic functions satisfying (6) are ob-

tained by computing Lyapunov function of the linearized sys-

tem around equilibrium points of (S ) in (1). It is a fast method

that do not intend to build a wide inner-approximation of

the viability kernel.

We instead consider parametric template functions, similar

to what has been investigated in [8], in order to find such

functions h. Given a parametric template function hp, the

problem is then to find parameters p ∈ P ⊂ Rk satisfying

the following quantified constraints (equivalent to (6) and

(7)):

∀x ∈ K (∃u ∈ U , hp (x) , 0 ∨ ˙hp (x, u) < 0) (8)

∧ (x < ∂K ∨ hp (x) > 0) (9)

We will assume next that P andU are boxes. The approach

presented in [8] is referred as Computable Sufficient Condi-
tion - Feasible Point Searcher (CSC-FPS) method. The FPS

loop organizes the search for valid parameter while the CSC

procedure effectively attempt to validate, or reject, parame-

ters. It is used to find a valid barrier functions for dynamical

systems separating trajectories starting from a set of initial

conditions from an unsafe set of states. The templates in [8]

require then to satisfy some additional constraints ensur-

ing this separation. Note also that no control is considered

in [8]. In order to deal with the control functions, we sug-

gest to relax the constraint (8) as follows. Given a finite set

of control functions U := {u1, u2, . . . , uq }, where for each
i = 1, . . . ,q, ui ∈ U , the constraint

∀x ∈ K , hp (x) , 0

q∨
i=1

˙hp (x, ui ) < 0, (10)

is a stricter, but easier to check, constraint than (8).

The Best-FPS-CSC algorithm. We suggest to adapt the FPS-

CSC algorithm from [8] for computing such barrier functions

hp. Similar to [8] we denote by ξ the constraint system cor-

responding to (10) and (9), i.e.:

ξ (p, x) := *
,
hp (x) , 0

q∨
i=1

˙hp (x, ui ) < 0
+
-

∧
(
x < ∂K ∨ hp (x) > 0

)
. (11)

The CSC-FPS approach aims at finding a parameter vector

p ∈ P such that ∀x ∈ K , ξ (p, x). It also requires tests to

prove that a given parameter box [p] does not contain any

valid parameter for ξ . For clarity, we also give the expression
of the negation of ξ :

¬ξ (p, x) := *
,
hp (x) = 0

q∧
i=1

˙hp (x, ui ) ≥ 0
+
-

∨
(
x ∈ ∂K ∧ hp (x) ≤ 0

)
. (12)

Proving the non-validity of a box [p] requires to show that

∀p ∈ [p] , ∃x ∈ K , ¬ξ (p, x). It is then necessary to handle

proof of solution to system of equations likehp (x) = 0, which

is not considered in [8]. However, constraint systems similar

to (12) are rigorously treated in [12]. To this end, they have

proposed to use parametric interval Newton tests to search

for the existence of such solutions x. We thus integrate such

tests to the CSC-FPS algorithm.

Eventually, the original CSC-FPS algorithm [8] stops once

a valid parameter p ∈ P is found. Therefore, we additionally

embed the FPS algorithm into an optimization loop, leading

to the Best-FPS algorithm.This algorithm corresponds to

a particular Branch & Bound algorithm which minimizes

an objective function over the parameters subject to the

universally quantified constraints defined by (8)-(9). The

objective function v : Rk → R to optimize must correspond

to the maximization of the volume of H - or as we will

consider afterwards, the minimization of the negation of

this volume. The expression of such an objective is complex

if we consider a general template function, and may even

not be available as such. For specific templates however,

some simple objective function can be used (see Section

4). Additional constraints on the parameters p can also be

considered, for e.g. constraining hp to be a convex function.

We denote this constraint system ψ : д(p) ∈ A, with д :

Rk → Rl and A ⊂ Rl . Contractors on such a constraint

system can be provided.
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Algorithm 1 describes the Best-FPS algorithm. It takes as

input the parameter box domain P, a box [x]
init

enclosing

K , the constraint systems ψ (if any) and ξ , the objective

function v and a precision ϵp > 0. The main loop iterates

on parameter boxes that are stored in a heap structure L,

initially containing the whole box P at line 1. The best valid

parameter p̂ and its objective valuation are initialized to

dummy values, meaning no viable parameter has yet been

found. The heap we suggest to use is a double heap as in [25],

i.e. two heaps whose top element are lowest with respect

to two different criterion. The top of one heap is the box

parameter [p] whose lower bound on the objective function

- simply obtained as min [v] ([p]) - is the lowest, meaning

that it prioritize best parameters p. The other is the box [p]′

with the highest upper bound on the objective function -

obtained analogously- which focuses on parameters that are

likely to satisfy the quantified constraint system. The choice

of the top of which heap to select the next box to iterate

at line 4 is random. Although the first sorting criterion is

standard for its purpose, the choice of the second one is

purely heuristic and assume that a bad parameter p (with

respect to the objective function) is more likely to satisfy the

quantified constraint system ξ .
After a box [p] is selected, it is split into several sub-boxes

at line 5. Here we implement this procedure as a bisection

with respect to the component of [p] with largest width. If the
width of the box [p] is smaller than the precision ϵp, then it is
not bisected and the Split procedure returns [p] itself. Then
for each box [p]′ obtained by splitting, several operations

are applied. First, the box is contracted using contractors

based on ψ , augmented with the constraint v (p) ≤ v̂ . This
latter constraint enforces to discard parameters worse than

p̂ from the search.

Next, the CSC procedure, described in Algorithm 2, is

applied. Details on this procedure are given hereafter. This

procedure returns a parameter p̃ in [p]′ and a status flag s . If
this flag indicates SAFE, this means the parameter vector p̃
satisfies ξ (p̃, x),∀x ∈ [x]. If s indicates UNSAFE, a counter-
example for the entire box [p]′ has been found, i.e. ∃x ∈
[x] such that ¬ξ (p, x) for all p ∈ [p]′. The flag indicates

UNKNOWN if no conclusion on [p]′ nor p̃ could be made. If

the flag is SAFE, the best viable parameter p̂ and its objective

value v̂ can be updated if it improves the current best one p̂.
In addition, any box [p] in L such that min [v] ([p]) > v̂ are

removed from the heap. Otherwise if the flag is UNKNOWN
and the box [p]′ has reached the prescribed precision ϵp, it
is inserted back into the heap L. UNSAFE boxes are simply

discarded from further research. Finally, a stopping criteria

is evaluated at line 17: the Best-FPS loop stops once the

heap is empty (no more parameters to proceed) or another

stopping criteria (e.g. maximal time, maximum number of

iterations, etc) is satisfied. The algorithm returns then the

best parameter vector p̂ found, if any.

Algorithm 1: Best Feasible Point Searcher
Input: Parameter box P, State box [x]

init
enclosing K ,

constraint system ξ andψ , objective v and

precision ϵp
Output: Parameter vector p̂

1 L ← {P} ; /* Heap structure */

2 v̂ ← ∞; p̂← null;
3 while L , ∅ and ¬stop do
4 [p]← Extract(L);

5 S ← Split([p] , ϵp);
6 for [p]′ ∈ S do
7 [p]′ ← Contract(ψ ∧ (v (p) ≤ p̂), [p]′);
8 if [p]′ = ∅ then continue;
9 (p̃, s ) ← CSC([p]′ , [x]

init
, ξ );

10 if s is Safe and v̂ > v (p̃) then
11 Update(v̂, p̂,L);
12 end
13 if s is not Unsafe and wid[p]′ > ϵp then
14 Insert(L, [p]′);
15 end
16 end
17 stop← CheckStoppingCriteria();

18 end
19 return p̂;

The CSC procedure, described in Algorithm 2, is a refor-

mulation of the original one in [8]. The algorithm iterates

over a stack of boxes in the universally quantified space x,
initially containing the whole box [x]

init
at line 1. The goal

is, though a decomposition of the box [x]
init

, to either val-

idate a parameter vector p̃ - selected at line 2- for all the

boxes of the stack, or find one box [x] containing a vector

x invalidating all the parameter box [p]. By using a stack,

a depth first search is performed. This choice of strategy is

motivated by the fact that if p̃ is a valid parameter vector,

there is no particular search strategy that will be better than

another for proving its validity as all the boxes from the

decomposition must be checked. However, if the parameter

box [p] is not valid, finding quickly the corresponding vector
x invalidating it is important. The depth-first search is suited

for this task.

Each box [x] taken from the stack at the beginning of each

loop are subject to different operations. First, a fast check of

consistency of [x] is performed at line 5. A contractor on ξ is
applied to the whole box ([p] , [x]) and if [x] is indeed con-

tracted, then there are some of the x in [x] that do not satisfy
ξ (p, x) for any p ∈ [p]. The parameter box is then not valid
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and an UNSAFE flag is returned. Then, the validity of the box

[x] with respect to p̃ and ξ is checked at line 7. A safe over-

approximation of the evaluation of the constraint system ξ
on (p̃, [x]) is performed by means of interval valuations with

interval extensions. Next, the box [x] is contracted at line 10

using a contractor on ¬ξ applied to ([p] , [x]). Contrary to

the first contractor, here each x ∈ [x] effectively removed

from the contracted box [x]′′ are satisfying ξ for all parame-

ters in [p], validating them. Afterwards, aDisprove procedure
with respect to ξ is applied to [p] and [x]′. This procedure is
equivalent to the proof procedure of [12] on the constraint

system ¬ξ . Starting from ([p] ,mid [x]), a parametric inter-

val Newton operator -an Hansen-Sengupta operator- with

inflation is applied on each system of equations involved in

each conjunction of constraints of ¬ξ described by (12). The

elements of [p] are selected as parameters for the paramet-

ric interval Newton operator, hence performing an attempt

to prove the existence of some x invalidating all [p]. If a
certified enclosure [xN ] of the solutions to the system of

equation is found (e.g. ∀p ∈ [p] , ∃x ∈ [xN ] , h(p, x) = 0) ,

then the remaining inequalities are checked on ([p] , [xN ])
by means of interval evaluations. If this check is successful,

the box [xN ] is proved to contain a x satisfying ¬ξ (p, x) for
all p ∈ [p]. The parameter box [p] is hence not valid.

Eventually, if none of those previous steps could validate

nor invalidate the current iterated box, then it is bisected if it

is has not reached the prescribed precision ϵx. The two new

boxes are pushed back into the stack. If the iterated box is

indeed too small, then CSC stops by returning anUNKNOWN
flag. We could still continue to explore the space of x in order

to invalidate [p], but it is not possible to validate p̃ anymore.

In the end, if the loop is exited after validating all the boxes

from the stack, then a SAFE flag is returned as well as the

valid parameter vector p̃.

Complexity. We can note that the Best-FPS-CSC algorithm

is a decomposition algorithm in the parameter space which

nests another decomposition algorithm in the universally

quantified state space. This entails an exponential time al-

gorithm in the joint parameter and state space. With such a

complexity, the algorithm is limited to relatively small prob-

lems, both in terms of number of states and parameters of the

template. We can note however that a complete exploration

of the parameter space is not necessary. Hence, using stop-

ping conditions and search heuristics in Algorithm 1 that

can lead to quickly find a sufficiently good valid parameter

p̂ might ease the computational burden.

3.2 Improvement of the results
From Proposition 3.1, when a function h is found, the set

H can easily be inner-approximated using interval analysis

in a branch and prune algorithm. It provides a first inner

Algorithm 2: Computable Sufficient Condition

Input: Parameter box [p], State box [x]
init

, constraint

system ξ and precision ϵx
Output: Vector p̃ and a status flag s

1 S ← {[x]
init
} ; /* Stack structure */

2 p̃← Select([p]) ; /* E.g. p̃ = mid([p]) */

3 while S , ∅ do
4 [x]← Pop(S);

5 ([p]′ , [x]′) ← Contract(ξ , [p] , [x]);
6 if [x]′ , [x] then return (p̃,Unsafe) ;
7 if ξ (p̃, [x]) then
8 continue ; /* Validation of [x] */

9 end
10 ([p]′′ , [x]′′) ← Contract(¬ξ , [p] , [x]);
11 if Disproveξ ([p] , [x]

′′) then
12 return (p̃,Unsafe);
13 end
14 if wid[x]′′ ≤ ϵx then
15 return (p̃,Unknown)
16 else
17 ([x]

1
, [x]

2
) ← Bisect([x]′′);

18 Push(S, [x]
1
); Push(S, [x]

2
);

19 end
20 end
21 return (p̃, Safe);

approximation through a paving with boxes. Proposition 2.1

is then used to design an iterative scheme that allows to

improve this inner approximation. For a given box [x̃], if we
find an input u such that for some t̃ ∈ [0, tend], the state x(t̃ )
is included in the inner-approximation of the viability kernel

we have produced so far, and such that for all t ∈
[
0, t̃

]
,

x (t ) ∈ K then [x̃] belongs to ViabS (K ). This property can be

used in an iterative approach to improve the results of the

first inner-approximation.

At each iteration we consider the boxes of the paving

belonging to the direct neighborhood of the current inner-

approximation and test this before-mentioned property. To

find this input u, we sampleU to a finite list of inputs and

use each of them with the box [x̃]. If the property is verified,

the box is then added to the current inner approximation

of the viability kernel. If not, and if a given precision is not

reached for the box, it is bisected. If in an iteration, no box is

added to the inner approximation or bisected, the algorithm

stops.

Improvements were considered for this iteration scheme

in the implementation used in the next section compared

to [20]. For example, when an input u has allowed to prove a

box to belong to ViabS (K ), it will be the first one to be tested
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for the next non-determined boxes neighboring [x̃]. Also at

each iteration, each epsilon box (boxes that have reached

the prescribed precision) has to be checked again since it

can reach a box newly added to ViabS (K ) in the previous

iteration. The results from validated numerical integration

have then to be stored for all epsilon box to not compute it

again.

As one can see, this improvement phase is an expensive

procedure asmany validated numerical integration processes

have to be repeated on a paving of the state space. This

justify the need of computing an inner-approximation of the

viability kernel in the first-phase which is as wide as possible,

in a reasonable amount of time.

4 RESULTS
We implemented the two phases of the algorithm in C++

using Ibex and DynIbex
2
, a plugin of Ibex providing rigorous

numerical integration tools using Runge-Kutta methods [1]

for the improvement phase
3
. All the experiments have been

ran on Linux Ubuntu 16.04, with CPU Intel i7 2.5 Ghz and

16 Go RAM.

4.1 Car on the hill
We compute the viability kernel on the “car on the hill” prob-

lem whose system is described as follows:




ẏ1 = y2 (t )

ẏ2 = −z (y1(t ),y2(t )) + u (t )
, (13)

where

z (y1,y2) = 9.81 sin

(
1.1 sin(1.2y1) + 1.2 sin(1.1y1)

2

)
+ 0.7y2.

This system for a given constant control u has several

equilibrium points at y2 = 0. We will use the equilibrium

points with u = 0 for initializing template functions. Here

there are 5 such points.

First, we consider the safe set to be the boxK = ([−1, 13]×
[−6, 6])T . The control function u is bounded in [−3, 3].

We consider the following 3-parametric template function:

hp (y) := p1 (y1 − c )2 + 2p2y22 + p3 (y1 − c )y2 − 1, (14)

i.e. a quadratic form where we additionally impose a positive

definite constraint on the parameters (i.e.hp must be convex).

This quadratic form is centered on an equilibrium point (c, 0).
The set of control functions are sampled to the following

ones: the constant functions u1 := −3, u2 := 0 and u3 := 3 in

2
http://perso.ensta-paristech.fr/~chapoutot/dynibex/

3
Sources and a virtual machine for running the experiments are available

at http://ben-martin.fr/hscc-2018-sources/
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Figure 2: (Car on the hill) Computed initial inner-
approximation of ViabS (K ): with our new method
(top); with the original method (bottom).

addition to the (bounded) feedback control

u4 := min (3,max (−3, ũ4)) ,

ũ4 :=
1

2

(c − y1 (t )) −
3

2

y2 (t ) + z (y1 (t ),y2 (t ))

which has been obtained by linearizing feedback. As an

objective function to optimize, we simply chose to mini-

mize the square of the 2-norm of (p1,p2) whose minimiza-

tion approximates the maximization of the volume of the

region defined by hp (x) ≤ 0. The parameter domain is

[0.025, 10] × [−5, 5] × [0.025, 10], with ϵp = 0.025. For the
CSC procedure, ϵx is set to max(0.00125,wid[p]/2), with [p]
the input parameter box. Note eventually that we fixed a

timeout to 10 seconds for each template function to find.

We compare our initial phase of the method with the one

from [20] (the improvement phase are identical). Results for

the initial inner-approximation of the viability kernel are

shown on Figure 2.

It took 30 seconds for our method to produce the union of

ellipsoids shown on the top of Figure 2, while it took about

5 seconds to obtain the ones with the original method. It

http://perso.ensta-paristech.fr/~chapoutot/dynibex/
http://ben-martin.fr/hscc-2018-sources/
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Figure 3: (Car on the hill) Improvement method after
5 iterations: starting with our newmethod (top); start-
ing with the original method (bottom).

is clear that our approach produces a larger initial inner-

approximation. The extra computations required to compute

it trades-off with the required computations for the improve-

ment phase. Figure 3 shows the result of the improvement

procedure after 5 iterations.

After 5 iterations, the current inner-approximation of the

viability kernel is wider if one uses our presented approach

than with the original one. In the end, it takes overall 150

seconds for our approach to converge to an accurate inner-

approximation of ViabS (K ), while it takes 300 seconds in the

original approach. This final inner-approximation is depicted

on Figure 4.

We consider now thatK := ([−1, 13]×[−6, 6])T \ (([4, 8]×
[2, 6])∪ ([4, 8]× [−6,−2]))T . We show here how the method

behave when the set K is not convex. Figure 5 shows the

initial ellipsoids obtained by our method, the results after 5

iterations of the improvement procedure and the final inner-

appoximation obtained. It took overall 400 seconds to obtain

this result.
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Figure 4: (Car on the hill) Improvement method at the
end of the computation with our new method.

The inner-approximation produced by the first phase via

the presented Best-FPS-CSC is well suited for such complex

safe sets compared to the previous method. In [20], the va-

lidity of the ellipses is only checked regarding their frontier.

It will then fail to detect “holes” within K , forbidden areas

that can occur inside a considered ellipse.

4.2 Balancing an heavy object on a light
rod

A second experiment has been conducted, this time with an

input of dimension 2. It demonstrates another improvement

using the method described in Section 3.1 compared to [20]

since it fails to produce ellipses for dimension of the input

greater than one. We used the equations of motion of a point

mass balancing on a rod:




ẏ1 = y2 (t )

ẏ2 = cos(y1 (t )) (u1 (t )y1 (t ) + u2 (t )y2 (t )) + 9.81 sin(y1 (t )).

(15)

using K =
[
− π

2
, π
2

]
× [−π ,π ] and U = [−15, 15] × [−2, 2].

The same template and same objective function as the one

for the previous experiment is considered here, but with

the only center (0, 0). We consider a sample of constant

control functions (u1,u2) ∈ {−15, 0, 15} × {−2, 0, 2}. We fixed

a timeout of 30 seconds for the first phase. Figure 6 provides

the results of the first phase of our method.

The final result is shown in Figure 7. It tooks overall 680

seconds of computations to obtain this result. A larger num-

ber of inputs increase both the size of the constraint system

(11) solved in the first phase and the sampling of control

during the second phase. Overall, this does not impact much

the computation process as the system is small.
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Figure 5: (Car on the hill) Non-convex K : initial inner-
approximation (top); after 5 iterations of the improve-
ment phase (middle); final inner-approximation (bot-
tom).

5 CONCLUSION
We have presented in this paper a rigorous method based on

interval analysis for computing viability kernels following

the framework proposed in [20]. In particular we investigated

another approach for generating initial inner-approximation

of the viability kernel based on the computation of specific
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Figure 6: (Balancing) First inner-approximation.
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Figure 7: (Balancing) Improvement method at the end
of the computation with our new method.

parametric template function. This method is inspired by

the method from [8], for the computation of barrier func-

tions. We propose some additional elements to this method,

namely extra tests for rejecting parameters not leading to

a valid function entailing an inner-approximation, and an

optimization loop to compute the set of parameters for this

function leading to a larger induced inner-approximation of

the viability kernel. A comparison of the new method with

the original one is presented, showing better performances

compared to the original approach.

There aremany further research directions for thismethod,

the next biggest issue to tackle being its scalability. To this

end, we need to study more efficient search strategies, in par-

ticular with a better focus on quickly finding valid parameter

for the template functions. Having a measure of validity of

parameters within a given box may help to direct the search

towards more promising regions of the parameter space. We

can also consider the adaptation of the method from [11]

to our problem, i.e. having a method that quickly finds a
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valid parameter vector within a parameter box, avoiding an

expensive decomposition of the state space at each iteration

of the algorithm. Last, we can think about using another op-

timization scheme, a heuristic one without a complete search

within the parameter space. Such a method would be possi-

ble provided an approximate model of the valid parameters,

and of the objective function if necessary, can be computed

in order to guide the heuristic search. Eventually, a com-

plete study of the merits and drawbacks of our (improved)

method compared to other techniques from the literature,

such as [16], needs to be made.

ACKNOWLEDGMENTS
Wewould like to thanks the referees for the useful comments.

This work is supported by the DGA/MRIS project "Sureté de

Fonctionnement des Systèmes Robotiques Complexes".

REFERENCES
[1] Julien Alexandre dit Sandretto and Alexandre Chapoutot. 2016. Vali-

dated Explicit and Implicit Runge-Kutta Methods. Reliable Computing
22 (2016), 79–103.

[2] Julien Alexandre dit Sandretto and Alexandre Chapoutot. 2016. Vali-

dated simulation of differential algebraic equations with Runge-Kutta

methods. Reliable Computing 22, pp. 56–77 (July 2016).

[3] Jean-Pierre Aubin. 2009. Viability theory. Springer Science & Business

Media. https://doi.org/10.1007/978-0-8176-4910-4

[4] Olivier Bouissou, Alexandre Chapoutot, and Adel Djoudi. 2013. En-

closing Temporal Evolution of Dynamical Systems Using Numeri-

cal Methods. In NASA Formal Methods (LNCS). Springer, 108–123.
https://doi.org/10.1007/978-3-642-38088-4_8

[5] Olivier Bouissou and Matthieu Martel. 2006. GRKLib: a Guaranteed

Runge Kutta Library. In Scientific Computing, Computer Arithmetic and
Validated Numerics. https://doi.org/10.1109/SCAN.2006.20

[6] Gilles Chabert and Luc Jaulin. 2009. Contractor programming. Artificial
Intelligence 173, 11 (2009), 1079 – 1100. https://doi.org/10.1016/j.artint.

2009.03.002

[7] Guillaume Deffuant, Laetitia Chapel, and Sophie Martin. 2007. Ap-

proximating Viability Kernels With Support Vector Machines. IEEE
Trans. Automat. Control 52, 5 (May 2007), 933–937. https://doi.org/10.

1109/TAC.2007.895881

[8] Adel Djaballah, Alexandre Chapoutot, Michel Kieffer, and Olivier

Bouissou. 2017. Construction of parametric barrier functions for dy-

namical systems using interval analysis. Automatica 78 (2017), 287 –
296. https://doi.org/10.1016/j.automatica.2016.12.013

[9] Karol Gajda, Andrzej Marciniak, and Barbara Szyszka. 2000. Three-

and Four-Stage Implicit Interval Methods of Runge-Kutta Type. Com-
putational Methods in Science and Technology 6, 1 (2000), 41–59. https:

//doi.org/10.12921/cmst.2000.06.01.41-59

[10] Antoine Girard. 2012. Controller synthesis for safety and reachability

via approximate bisimulation. Automatica 48, 5 (2012), 947 – 953.

https://doi.org/10.1016/j.automatica.2012.02.037

[11] Milan Hladík and Stefan Ratschan. 2014. Efficient Solution of a Class

of Quantified Constraints with Quantifier Prefix Exists-Forall. Math-
ematics in Computer Science 8, 3 (2014), 329–340. https://doi.org/10.
1007/s11786-014-0195-8

[12] Daisuke Ishii, Alexandre Goldsztejn, and Christophe Jermann. 2012.

Interval-based projection method for under-constrained numerical

systems. Constraints 17, 4 (2012), 432–460. https://doi.org/10.1007/

s10601-012-9126-y

[13] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. 2001. Applied
Interval Analysis with Examples in Parameter and State Estimation,
Robust Control and Robotics. Springer-Verlag. https://doi.org/10.1007/
978-1-4471-0249-6

[14] Shahab Kaynama, John Maidens, Meeko Oishi, Ian M. Mitchell, and

Guy A. Dumont. 2012. Computing the Viability Kernel Using Maximal

Reachable Sets. In Proceedings of the 15th ACM International Conference
on Hybrid Systems: Computation and Control (HSCC ’12). ACM, New

York, NY, USA, 55–64. https://doi.org/10.1145/2185632.2185644

[15] R. Baker Kearfott. 1996. Rigorous Global Search: Continuous
Problems. Kluwer Academic Publishers. https://doi.org/10.1007/

978-1-4757-2495-0

[16] Milan Korda, Didier Henrion, and Colin N. Jones. 2013. Convex com-

putation of the maximum controlled invariant set for discrete-time

polynomial control systems. In 52nd IEEE Conference on Decision and
Control. 7107–7112. https://doi.org/10.1109/CDC.2013.6761016

[17] Andrzej Marciniak. 2004. Implicit Interval Methods for Solving the

Initial Value Problem. Numerical Algorithms 37, 1-4 (2004), 241–251.
https://doi.org/10.1023/B:NUMA.0000049471.81341.60

[18] Andrzej Marciniak and Barbara Szyszka. 2004. On Representations

of Coefficients in Implicit Interval Methods of Runge-Kutta Type.

Computational Methods in Science and Technology 10, 1 (2004), 57–

71. https://doi.org/10.12921/cmst.2004.10.01.57-71

[19] Dominique Monnet, Luc Jaulin, Jordan Ninin, Alexandre Chapoutot,

and Julien Alexandre-dit Sandretto. 2015. Viability kernel computation

based on interval methods. In SWIM (Summer Workshop on Interval
Analysis).

[20] D. Monnet, J. Ninin, and Luc Jaulin. 2016. Computing an Inner and an

Outer Approximation of the Viability Kernel. Reliable Computing 22,

1 (Sep 2016), 138–148.

[21] Ramon E. Moore. 1966. Interval Analysis. Prentice-Hall.
[22] Bouguerra Muhammad, Thierry Fraichard, and Mohamed Fezari. 2015.

Safe Motion using Viability Kernels. In ICRA 2015-IEEE Int. Conf. on
Robotics and Automation. 3259–3264. https://doi.org/10.1109/ICRA.

2015.7139648

[23] Nedialko S Nedialkov, Kenneth R Jackson, and George F Corliss. 1999.

Validated solutions of initial value problems for ordinary differential

equations. Appl. Math. Comput. 105, 1 (1999), 21–68. https://doi.org/
10.1016/S0096-3003(98)10083-8

[24] Arnold Neumaier. 1991. Interval Methods for Systems of Equations. Cam-

bridge University Press. https://doi.org/10.1017/CBO9780511526473

[25] Bertrand Neveu, Gilles Trombettoni, and Ignacio Araya. 2016. Node

selection strategies in interval Branch and Bound algorithms. Journal
of Global Optimization 64, 2 (2016), 289–304. https://doi.org/10.1007/

s10898-015-0375-3

[26] Gunther Reissig, Alexander Weber, and Matthias Rungger. 2017. Feed-

back Refinement Relations for the Synthesis of Symbolic Controllers.

IEEE Trans. Automat. Control 62, 4 (April 2017), 1781–1796. https:

//doi.org/10.1109/TAC.2016.2593947

[27] Patrick Saint-Pierre. 1994. Approximation of the viability kernel.

Applied Mathematics and Optimization 29, 2 (01 Mar 1994), 187–209.

https://doi.org/10.1007/BF01204182

[28] Zhikun She and Bai Xue. 2013. Computing an invariance kernel with

target by computing Lyapunov-like functions. IET Control Theory &
Applications 7, 15 (2013), 1932–1940. https://doi.org/10.1049/iet-cta.
2013.0275

https://doi.org/10.1007/978-0-8176-4910-4
https://doi.org/10.1007/978-3-642-38088-4_8
https://doi.org/10.1109/SCAN.2006.20
https://doi.org/10.1016/j.artint.2009.03.002
https://doi.org/10.1016/j.artint.2009.03.002
https://doi.org/10.1109/TAC.2007.895881
https://doi.org/10.1109/TAC.2007.895881
https://doi.org/10.1016/j.automatica.2016.12.013
https://doi.org/10.12921/cmst.2000.06.01.41-59
https://doi.org/10.12921/cmst.2000.06.01.41-59
https://doi.org/10.1016/j.automatica.2012.02.037
https://doi.org/10.1007/s11786-014-0195-8
https://doi.org/10.1007/s11786-014-0195-8
https://doi.org/10.1007/s10601-012-9126-y
https://doi.org/10.1007/s10601-012-9126-y
https://doi.org/10.1007/978-1-4471-0249-6
https://doi.org/10.1007/978-1-4471-0249-6
https://doi.org/10.1145/2185632.2185644
https://doi.org/10.1007/978-1-4757-2495-0
https://doi.org/10.1007/978-1-4757-2495-0
https://doi.org/10.1109/CDC.2013.6761016
https://doi.org/10.1023/B:NUMA.0000049471.81341.60
https://doi.org/10.12921/cmst.2004.10.01.57-71
https://doi.org/10.1109/ICRA.2015.7139648
https://doi.org/10.1109/ICRA.2015.7139648
https://doi.org/10.1016/S0096-3003(98)10083-8
https://doi.org/10.1016/S0096-3003(98)10083-8
https://doi.org/10.1017/CBO9780511526473
https://doi.org/10.1007/s10898-015-0375-3
https://doi.org/10.1007/s10898-015-0375-3
https://doi.org/10.1109/TAC.2016.2593947
https://doi.org/10.1109/TAC.2016.2593947
https://doi.org/10.1007/BF01204182
https://doi.org/10.1049/iet-cta.2013.0275
https://doi.org/10.1049/iet-cta.2013.0275

	Abstract
	1 Introduction
	2 Background
	2.1 Problem formulation
	2.2 Interval analysis
	2.3 Validated numerical integration

	3 Main results
	3.1 First inner approximation
	3.2 Improvement of the results

	4 Results
	4.1 Car on the hill
	4.2 Balancing an heavy object on a light rod

	5 Conclusion
	Acknowledgments
	References

