
i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 1 — #1 i
i

i
i

i
i

In: Heuristics: Theory and Applications
Editor: Patrick Siarry, pp. 1-31

ISBN 0000000000
c© 2007 Nova Science Publishers, Inc.

Chapter 1

CONTINUOUS-GRASP REVISITED

Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers ∗
Université de Nantes — LINA UMR CNRS 6241

UFR Sciences — 2 rue de la Houssinière BP92208, 44322 Nantes Cedex 03 — France

Abstract

C-GRASP is a metaheuristic introduced in 2006 by Hirsch et al. for continuous
global optimization. It is a multi-start neighborhood-based metaheuristic derived from
the greedy randomized adaptive search procedure proposed by Féo and Resende in
1989. The main difference with most other metaheuristics designed for continuous
optimization is the use of a construction procedure. This chapter presents novel mech-
anisms and components to reinforce the efficiency of the original C-GRASP. The pro-
posals concern (1) the construction procedure, (2) the improvement procedure, and (3)
additional new mechanisms. Among the noticeable changes, the improvement pro-
cedure is now based on direct searches. The revisions perfect the metaheuristic in
reducing its computational effort and facilitating the parameters management. Numer-
ical experiments are performed using benchmark problem functions commonly used
in unconstrained continuous global optimization. The collected results are compared
with the best results known in the literature for competitive metaheuristics. The good
performances of the proposed version confirm the advantage of coupling C-GRASP
with direct searches and validate the extensions introduced.

PACS 05.45-a, 52.35.Mw, 96.50.Fm. Keywords: Unconstrained Global Optimization,

Metaheuristic, GRASP, Direct Search

AMS Subject Classification: 53D, 37C, 65P.

∗E-mail address: {firstname}.{lastname}@univ-nantes.fr

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 2 — #2 i
i

i
i

i
i

2 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

Contents

1. Introduction 3
1.1. Unconstrained global optimization and metaheuristics 3
1.2. Coupling metaheuristics with direct searches 4
1.3. Motivations and directions of our proposals 6

2. From GRASP to C-GRASP 6
2.1. C-GRASP: versions 2006 and 2010 . 6
2.2. Construction procedure . 8
2.3. Local improvement procedure . 11
2.4. Summary of parameters and specificities 11

3. Revisiting C-GRASP: the version 2012 12
3.1. Construction procedure with linear complexity 12
3.2. Local improvement by direct search . 15
3.3. Control of discretization . 15

4. Numerical experiments 16
4.1. Protocols and benchmarks . 17
4.2. Convergence analysis and validation of the propositions 18
4.3. Precision within limited evaluation budget 19
4.4. Strengths and weaknesses . 21

5. Conclusion 22

A Detailed Experimental results 26
A1. Convergence results . 26
A2. Precision within limited evaluation budget 26

B Benchmark Functions 28

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 3 — #3 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 3

1. Introduction

Dealing with a continuous global optimization problem consists of computing solutions
under a set of constraints, and optimizing an objective function. Both constraints and ob-
jective function are in general non-linear. Solving such a problem consists of computing an
optimal solution. A usual difficulty in this optimization context is the huge number of local
optimal solutions. Consequently the computation of a global solution requires a global ap-
proach, which is the scope of global optimization. Introduction to global optimization and
its applications can be found in [1].

1.1. Unconstrained global optimization and metaheuristics

Unconstrained Global Optimization (UGO) is a special case where the variables are only
subject to bound constraints. A UGO problem can be formulated as:

min f (x)
s.t li ≤ xi ≤ ui ∀i ∈ {1, · · · ,n}

x ∈ Rn

where f : D → R and li and ui are respectively the lower and upper bound of the ith

variable, and where D = {x | l ≤ x ≤ u} ⊆ Rn. A global optimal solution x∗ verifies
∀x ∈ [l,u], f (x∗)≤ f (x). This problem can be seen as the problem of finding the minimum
value of a mathematical function. That is why later in this chapter, the term "function" may
refer to the related UGO problem. No preliminary hypotheses are made on the functions
to solve. Therefore, even if there are no constraints, many difficulties may arise from the
function f to minimize. For instance, f may be non-convex, or the gradient of f may not
be available, or difficult to use. Moreover the evaluation of f can be time consuming. That
is why in some situations, the aim of a solving technique is to give a good solution within
a reasonable cost in terms of number of function evaluations. Solving a UGO problem can
be done in two main ways:

- with an exact method. Here, exact is understood in the sense of the identification of
the global optimum x∗ by a solution x̂ close to it with respect to a fine precision, or
the determination of a narrow region [l̂, û] containing x∗. The last can be done, for
instance, through a branch & bound strategy based on interval analysis. Introduction
to these techniques can be found in [2].

- with an approximation method. Such methods aim at giving high quality solutions
within a restricted computational cost. There is no guarantee of the global optimality
of the solutions found. The need of global optimality is not often required in practice.
Therefore, this is the most common approach. Metaheuristics illustrate this class of
method.

Many metaphors of real life have inspired the research on metaheuristics. Genetic al-
gorithms, tabu search [3], or ant colony [4] are amongst the more representative ones [5,6].
The research on metaheuristics for solving continuous optimization problem has been a very
active field for the last few decades. Here the genetic algorithms represent the most impor-
tant wave of contributions. But recently, variants of metaheuristics originally designed for

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 4 — #4 i
i

i
i

i
i

4 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

combinatorial optimization have been proposed for continuous optimization. The exten-
sion for continuous domains of ant colony optimization by Socha and Dorigo [7], or again
of tabu search by Chelouah and Siarry [8] are two representative examples. The metaheuris-
tic GRASP (Greedy Randomized Adaptive Search Procedure) [9] has followed this wave
with the C-GRASP (for Continuous GRASP) metaheuristic introduced in 2006 by Hirsch
et al. [10, 11].

Metaheuristics are often coupled with local search in order to enhance the efficiency of
the approximation method [12]. For global optimization, the use of gradient-based tech-
niques with metaheuristics is an interesting option. However, in several situations the gra-
dient is not available. Thus, the coupling of metaheuristics with techniques named “direct
searches” appears as an alternative.

1.2. Coupling metaheuristics with direct searches

Direct searches were originally investigated in the 50’s - 60’s. Their main idea is to
extract and use information provided by the evaluations of the problem function, without
making any use of its gradient. Although those techniques were widely used due to their
understandability and efficiency, direct searches have gained in popularity in continuous
optimization field after the work of Torczon in 1991 [13].

Any method which does not use the gradient can be considered as a direct search. How-
ever, this definition is wide. In [14], a discussion about this terminology is proposed. In
this chapter, we restrain the definition to any method already known as a direct search, or
based on one of them. Well known direct searches are the Pattern Search from Hooke and
Jeeves [15] and the Simplex Search from Nelder and Mead [16].

The simplex search from Nelder and Mead is known to work well on simple problems
(on low-dimensional functions) but can encounter difficulties on other problems. Also,
McKinnon shows it has not such good convergence results [17]. Still, its principles are
easy to understand, and the method easy to implement and to tune. Moreover, Kelley [18]
proposed some tests able to detect degenerated states involved in the convergence issues.
When detected, a restarting mechanism is applied. Therefore, two consecutive calls to the
simplex search can work as a restarting process. Finally, recent work from Pedroso [19] has
introduced simple metaheuristics based on the simplex search. One of them, a multi-start
simplex search, shows interesting results compared to its simplicity.

The principles of the original Nelder-Mead from [16] are summarized here. First, from
the input solution x, build a simplex of points which is a set of n + 1 solutions (x + n
constructed points). The solutions in the simplex are indexed x1,x2, · · · ,xn+1 such that
f (x1)< f (x2)< · · ·< f (xn+1). Then, the method tries to improve the worst solution of the
simplex xn+1 by checking solutions on the line defined by xn+1 and the centroid of the other
solutions in the simplex c = ∑

n
i=1 xi/n. At least the reflection xr of xn+1 (xr = c+(c−xn+1))

of center c is checked and evaluated. Then, under particular conditions, other solutions can
be checked and accepted:

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 5 — #5 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 5

• the expansion point xe = c+2(c−xn+1) is checked if xr is better than x1 and accepted
if f (xe)< f (xr).

• xr is accepted if f (xr)< f (xn).

• the outer contraction xoc = c+ 0.5(c− xn+1) is checked if f (xn) ≤ f (xr) < f (xn+1)
and accepted if f (xoc)< f (xr).

• the inner contraction xic = c− 0.5(c− xn+1) is checked if f (xn+1) ≤ f (xr) and ac-
cepted if f (xic)< f (xn+1).

In the case that none of these solutions is accepted to replace xn+1, a shrinkage of the
simplex is made. The simplex is reduced by half towards its best solution. See figure 1 for
an illustration of all of those possible trial points in 2 dimensions.

x1

x2

x3

xr

xe

xoc

xic

x1

x2

x3

x′
2

x′
3

Figure 1. Simplex Search from Nelder and Mead with n = 2. On the left, the different
possible trial points are presented. On the right, the shrinkage step is shown.

The method is stopped when the difference between the evaluation of the best and the
worst solution of the simplex drops below a given threshold or when a number of evalua-
tions is reached.

Recently, direct searches have been successfully combined with metaheuristics. We refer
to the PhD thesis of Hedar [20] and the subsequent papers [21–24] for a wide variety of such
combinations proposals. We also refer to the recent work from Hvatumm and Glover [25]
for an example of a rigorous study of combinations of direct searches with the scatter search
metaheuristic in a high-dimensional problem solving context.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 6 — #6 i
i

i
i

i
i

6 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

1.3. Motivations and directions of our proposals

A targeted aim for us is to solve efficiently unconstrained global optimization problems rig-
orously with an approach based on interval-based branch & bound algorithm. The pruning
of the search domain parts which are proven useless for the determination of the global op-
timum is a functionality of such an algorithm. The pruning procedure makes use of bounds
which are currently heuristically computed. A goal is to improve the quality of bounds by
using a fast, aggressive and powerful metaheuristic with, if possible, few parameters to tune.
A better bounding gives a better branching process and therefore, it allows faster the elimi-
nation of non-promising regions of the search space. Regarding the expected requirements,
the overview of the metaheuristics for continuous optimization led us to choose C-GRASP.
An in-depth algorithmic study of C-GRASP, and the observations stemming from many
numerical experiments convinced us to propose a revisited version of C-GRASP coupled
with direct searches.

The next sections of the chapter are organized as follows. Section 2. presents C-GRASP
and its main features. The construction and improvement procedures are developed. The
parameters are summarized. The revisited version of C-GRASP is presented in Section 3..
The construction procedure with linear complexity in terms of problem function evaluation,
the local improvement by direct search and the control of discretization are described. Sec-
tion 4. states the best algorithmic configuration observed, reports numerical experiments
with a comparison with the best metaheuristics from the literature. Section 5. concludes
the chapter with a discussion of the propositions and the perspectives of future work around
C-GRASP. Two annexes report the extra information related to the numerical experiments.

2. From GRASP to C-GRASP

GRASP is a multi-start, stochastic and neighborhood-based metaheuristic. Its central
principle is to mix a greedy algorithm, for the good quality of the solution returned, with
a random algorithm, for the diversity of solutions provided. The principle defines the two
main phases of GRASP (see Algorithm 1): a greedy randomized construction phase (line
1.5), and a local improvement phase (line 1.6). For further details on GRASP metaheuristic,
we refer to the existing annotated bibliographies (e.g. [26]) and surveys (e.g. [27]) and
references therein.

2.1. C-GRASP: versions 2006 and 2010

C-GRASP [10, 11, 28] is an adaptation of GRASP to continuous optimization problems,
where the search space is discretized both in the construction and local improvement phases.
The construction procedure is a greedy-randomized method which is used to build and/or
rebuild a solution. The parameter α ∈ [0,1] controls the randomness of the construction. A
neighborhood is defined and is used inside the local improvement procedure. In addition,
the sharpness of both procedures is controlled by a discretization parameter h ∈ [he,hs]
where he and hs are two user defined parameters. They respectively correspond to the
ending and starting discretization step.

The main procedure of C-GRASP is presented in Algorithm 2 and explained hereafter.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 7 — #7 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 7

Algorithm 1: GRASP: High-level algorithm

begin1.1

InputProblemInstance()1.2

Initialize(x̂)1.3

while Stopping criteria not met do1.4

x← ConstructGreedyRandomizedSolution(· · ·)1.5

x′← LocalImprovement(x)1.6

if x′ is better than x̂ then1.7

x̂← UpdateBestSolution(x′)1.8

end1.9

end1.10

return x̂1.11

end1.12

Algorithm 2: C-GRASP: main procedure
Data: The problem (function f , bounds l and u), hs and he, ρlo
Result: The best solution found x̂
begin2.1

f̂ ← +∞2.2
while Stopping criteria not met do2.3

x← ConstructUniformRandom(l,u)2.4
h← hs2.5
while h≥ he do2.6

ImprC← false2.7
ImprL← false2.8
(x, ImprC)← ConstructGreedyRandomized(x, f (.),n,h, l,u) /∗ Improvement2.9
of solution by construction ∗/
(x, ImprL)← LocalSearch(x, f (.),n,h,ρlo, l,u) /∗ Improvement of solution by2.10
local search ∗/
if f (x)< f̂ then2.11

x̂← x2.12

f̂ ← f (x)2.13
end2.14
if ¬ImprC and ¬ImprL then2.15

h← h
22.16

end2.17
end2.18

end2.19
return x̂2.20

end2.21

The first loop at line 2.3 concerns the multi-start part of the method. The next two lines
are the initialization of a start. A solution x is randomly created in the search space and
the parameter h is set to its initial value hs. The second loop at line 2.6 is the main loop
of the method where the calls to the construction and local improvement procedures occur

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 8 — #8 i
i

i
i

i
i

8 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

respectively at lines 2.9 and 2.10. The construction procedure’s inputs are all induced by the
problem instance (f (.), n, l and u) and the current solution x. The parameter α is randomly
selected in [0,1] at the beginning of each call to the construction procedure. The local
improvement has an additional specific input ρlo ∈ [0,1] which is a user defined parameter
controlling the portion of neighborhood that will be checked. Both procedures have two
outputs: a (possibly) modified solution and a boolean value indicating if the procedure has
produced an improvement. These values are contained in the variables ImprC and ImprL.
Block starting at line 2.11 updates the best solution found. Finally, line 2.15 is the necessary
condition leading to a reduction of the discretization step h. When both the construction and
the local improvement procedure do not produce an improvement, the value of h is divided
by 2.

Among the differences with the version of GRASP designed for discrete optimization,
the output solution of the local improvement procedure is also used as input solution for the
construction procedure. A solution x is generated, then the search is performed in a series
of "rebuild and improve" stages. Along this process, the discretization step h is reduced,
refining the overall search.

The multi-start process is controlled by the stopping rules of Hart [11, 29]. Typically,
these rules approximate at the end of each start the probability that the best solution found so
far x̂ is close to the unknown optimum x∗ with respect to a given precision ε. More precisely,
the probability P(f (x̂)≤ f (x∗)−ε) is approximated by ρs(ε) where s is the number of starts
already performed. With this approximation, no more starts are applied (and the algorithm
stops) when

φ(2δ
√

s)−φ(−2δ
√

s)− (1−ρs(ε))
s ≥ 1−β

where φ(x) is the cumulative distribution of the standard normal. δ and β are used to de-
termine the minimum number of starts performed. 1−β corresponds to the required prob-
ability of success and δ to the limit on the difference P(f (x̂) ≤ f (x∗)+ ε)− ρs(ε), i.e it
determines a number of starts for which the approximated probability can be considered
sufficiently close to the exact probability.

2.2. Construction procedure

The main feature of C-GRASP compared to other metaheuristics in continuous optimiza-
tion is the use of a construction procedure. Algorithm 3 summarizes the main steps of the
construction procedure presented in detail in [11]. The idea is, starting from the input x, to
check different possible values for each variable. These values can be geometrically rep-
resented as hyper-grid points aligned on axis directions starting from x. This hyper-grid is
built by discretizing the search space with h. The different values of a variable are checked
through the use of a line search procedure. Applied to each variable sequentially, this proce-
dure evaluates the fitness of the different variable values, including the current one and the
corresponding boundaries, and returns the best one. Finally, one among the best variables
is randomly selected, its associated best value replacing the one in x. The selected variable
is then removed from the tested ones until the end of the construction procedure. Therefore,
x can move at most one time per axis direction.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 9 — #9 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 9

Algorithm 3: C-GRASP: Greedy Randomized construction procedure
Data: Solution x, Discretization step h
Result: The modified solution x, Boolean value ImprC
begin3.1

UnFixed← {1,2, ...,n}3.2
α← Value ∈ [0,1]3.3
while UnFixed 6= /0 do3.4

for i ∈ UnFixed do3.5
ti ← LineSearch(x,h, i,n, f (.), l,u)3.6

end3.7
fmin← mini∈Unfixed(f (ti))3.8
fmax← maxi∈UnFixed(f (ti))3.9
RCL← /03.10
Threshold← fmin+α∗ (fmax− fmin)3.11
for i ∈ UnFixed do3.12

if f (ti) ≤ Threshold then3.13
RCL← RCL ∪ {i}3.14

end3.15
end3.16
j← RandomlySelectElement(RCL)3.17
if f (x) > f (t j) then3.18

x← t j3.19
ImprC← true3.20

end3.21
UnFixed← UnFixed\{ j}3.22

end3.23
return (x, ImprC)3.24

end3.25

The greedy-randomized selection of a variable works as follows. The application of the
line searches along each tested variable computes a set of tested solutions T with T =
{tk | k ∈ K} where K is the set of tested directions (or variables) and tk is the best grid
solution along the kth axis direction (initially, K = {1..n}) starting from the input solution
x. The solution tk can only differ from x on the kth variable value. Then, fmin and fmax are
defined as fmin = mint∈T (f (t)) and fmax = maxt∈T (f (t)). Finally, a Restricted Candidate
List (RCL) is defined as:

RCL = {t | f (t)≤ fmin+α× (fmax− fmin), t ∈ T}

The solution replacing x will be randomly (uniformly) selected in the RCL. The
influence of the parameter α can easily be seen: if α = 0 then RCL = {tmin} where
f (tmin) = fmin. Thus, the best solution is always selected. Otherwise, if α = 1 then
RCL = T therefore the next solution is randomly selected between all of the other tested
ones. The higher the value of α, the more random the construction procedure. In [11] α

is randomly selected at the beginning of each construction procedure, making some calls
more random than others. The construction procedure is analogous to standard construc-
tions in discrete optimization. Utility of variables are computed and a selection of one of
the variables to change is made among the most interesting ones. In C-GRASP, the utility

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 10 — #10 i
i

i
i

i
i

10 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

used is the evaluation of the function f . Figure 2 shows an example in 2 dimensions of a
call to the construction procedure.

Step 1

Step 2

t2

t1

t'2

outx

inx

Figure 2. Construction with n = 2. The grid is discretized by h. First, compare grid points
along each axis and select one of the best between t1 and t2 with respect to f . t1 is chosen
thus x is replaced by t1 at the end of step 1. Then the remaining direction (in squares) is
checked and the best trial t ′2 is kept. Finally, x is moved to t ′2 at the end of step 2, terminating
the construction.

The natural translation of the ideas of a construction procedure in combinatorial opti-
mization to non-linear continuous optimization makes the method more dedicated to solve
problems having some separability. Since the construction re-builds a solution variable per
variable, it is not possible to directly reach a solution with at least 2 different variables value
from the input solution. There must be a strictly improving path between the two solutions,
on which moves from one solution to another modify at most one variable.

Example 1. Consider the problem of minimizing x1 sin(x1 · π

2)+ x2 sin(x2 · π

2) with x1,x2 ∈
[1,13]. All optima are located on {3,7,11}2 with the global one on (11,11). A call to the
construction procedure is made with the input solution x = (3,7) and h = 4. The variables
values giving the best improvement starting from those of x are 11 for both variables. The
first iteration of the construction will move either to the solution (11,7) or (3,11). Suppose
(11,7) is chosen. Then other values have to be checked for the second variable. The
best one is again 11, leading to the solution (11,11) which is the global optimum. In this
example, the solution x = (3,7) was able to move to x∗ = (11,11) because each of the
intermediate solutions (the solution (11,7)) improve x.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 11 — #11 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 11

2.3. Local improvement procedure

Considering now the local improvement procedure, it appears that we are fairly free to
chose the method we want. In C-GRASP [11], the method used is a neighborhood search
called h-neighborhood search. A set of solutions is built onto the hyper-sphere of radius
h centered on the solution to improve x. A solution inside the neighborhood is randomly
selected and checked if it improves the current one. In the case that a better solution is
found, the new solution replaces the current one x and the process is repeated. Algorithm 4
describes the procedure.

The h-neighborhood [11] is defined as follows: let h be the current discretization step.
Define

Sh(x) = {x′ | l ≤ x′ ≤ u, x′ = x+ τ∗h, τ ∈ Zn}
as the set of points in the search space that are on the discrete grid (of step size h) centered
on x. Define

Bh(x) = {x′ | x′ = x+h∗ (x̄− x)/||x̄− x||2, x̄ ∈ Sh(x)\{x}}
to be the set of projections of points in Sh(x) onto the hyper-sphere centered on x of radius h.
The h-neighborhood of the solution x is the set Bh(x). This is where solutions are randomly
and uniformly picked. The parameter ρlo is used here to determine the maximum number of
solutions that will be checked without any improvement before stopping the local search. At
most a ρlo portion of the number of grid solutions are checked before assuming there is no
more improvement. This maximum number is computed at line 4.2 and 4.3 in Algorithm
4. The selection of a trial solution occurs at line 4.8. The update of the current solution
happens in the block at line 4.9.

2.4. Summary of parameters and specificities

The main parameters of C-GRASP the user has to tune are

• starting and ending discretization steps hs and he.

• the density of the neighborhood ρlo for the local improvement procedure.

• the stopping rules parameters: the precision of the sought solution ε, the required
probability β of convergence and the tolerance δ.

Other parameters can be extracted to be tuned by the user, like α used in the construction
procedure. Such parameters are self tuned as previously described and in [11].

As a preliminary conclusion, C-GRASP is a metaheuristic based on easily explainable
principles, which follow an easily understandable algorithmic description, and require few
parameters to tune. C-GRASP is also flexible since the construction and local improvement
procedures do not interact directly together. Thus, it is easy to plug ad-hoc procedures ac-
cording to the optimization problem to solve. For example, Birgin and al. [30] have recently
proposed C-GRASP with a gradient-based technique as a local improvement procedure. In
our context where the gradient may be unavailable, the hybridization of C-GRASP with
direct searches, gradient-free methods known to be efficient, has motivated our work [31].
Such hybridization has already been suggested in [32] but without giving a strong numerical
demonstration on the strength of the approach.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 12 — #12 i
i

i
i

i
i

12 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

Algorithm 4: C-GRASP: h-neighborhood search
Data: Solution x, Discretization step h, Grid proportion ρlo
Result: The modified solution x, Boolean value ImprL
begin4.1

NumGridPoints← ∏
n
i=1d(ui− li)/he4.2

NumPointsNoImprove← dρlo ∗NumGridPointse4.3

NumCheckedPoints← 04.4

minF← f (x)4.5

while NumCheckedPoints < NumPointsNoImprove do4.6

NumCheckedPoints← NumCheckedPoints+14.7

x̄← SelectRandomlyIn(Bh(x))4.8

if f (x̄) < minF then4.9

ImprL← true4.10

x← x̄4.11

minF← f (x̄)4.12

NumCheckedPoints← 04.13

end4.14

end4.15

return (x, ImprL)4.16

end4.17

Our contributions to C-GRASP are multiple. We have proposed a revised construction
procedure which attempts to give a better compromise between cost and efficiency than
the original method. We have also studied the possibility of coupling C-GRASP with di-
rect searches, well known derivative-free local optimizers generally used for that kind of
problem. Also, we have investigated new components or strategies to use inside C-GRASP
aiming at both reducing the cost of the method without deteriorating its performances, and
simplifying the tune of some parameters. The next section develops these contributions.

3. Revisiting C-GRASP: the version 2012

The continuous GRASP algorithm does not scale well in general since too many evaluations
of the objective function are necessary to reach precise enough solutions. In this section,
a construction procedure with linear complexity is introduced and the local improvement
method is implemented by direct search. Parameter tuning, in particular for the discretiza-
tion parameter, is also discussed.

3.1. Construction procedure with linear complexity

The original construction procedure derives a new solution after n successive axis-aligned
movements from the current solution. Each step consists of performing a line search for
all the remaining dimensions, leading to O(n2) calls to this procedure. Moreover, every
line search explores the whole domain, hence being very expensive when the discretization

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 13 — #13 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 13

parameter decreases. More precisely, the number of solutions to be visited grows exponen-
tially, as shown in the following proposition.

Proposition 1. The construction procedure makes O(2pn2) evaluations of f where p is the
number of times the discretization parameter has been reduced.

Proof. In the worst case, the current solution is modified at each iteration, leading to
0.5n(n+1) calls to the line search procedure. Moreover, one line search on the j-th variable
requires (u j− l j)/h evaluations, and the discretization parameter verifies hs = 2ph since it
is regularly halved during the algorithm. The stated result directly follows since there are
O(n2) calls to the line search, each one performing 2p(max j(u j− l j)/hs) evaluations of f ,
i.e. O(2p).

Our goal is to define a new construction procedure with a linear complexity in order to
handle high-dimensional problems. The exponential factor 2p can be eliminated by consid-
ering a window around the current solution which must remain constant during the search.
The quadratic factor n2 can be simplified by performing only one line search per dimension.
However, in order to keep an exploration power, one may have to combine the solutions
from the samples located on the coordinate axes.

The new algorithm consists of three successive phases. The first phase creates a sampling
through an application of one line search per dimension within the window around the
current solution x. This window corresponds to the initial domain [l,u] at the beginning of
the algorithm and it is halved along with the discretization parameter h. The second phase is
a recombination of the sample solutions located on the coordinate axes, aiming at exploring
the current window globally. The third and last phase, as in the original continuous GRASP
algorithm, is a greedy randomized selection of the output solution.

It turns out that the recombination procedure used in the second phase is a key compo-
nent. It must be cheap enough to keep a suitable practical complexity, for instance by fixing
the number of solutions to be generated. Moreover, it must have the potential of generating
good quality solutions everywhere in the window.

More precisely, let Xi be the set of values considered by the line search on the i-
th dimension, for i = 1, . . . ,n. The ultimate goal is to select the best solution from the
Cartesian product X1×X2× ·· ·×Xn such that a few evaluations of f are done. For sep-
arable problems, it seems necessary to select the best value from each set Xi (the value
leading to a minimum value of f) and to combine those values. For non separable prob-
lems, it also seems important to combine sub-optimal values. The spectrum of strategies
must be wide. In this work, a very specific technique has been implemented, described
as follows. Let x = (x1,x2, . . . ,xn) be the current solution. Suppose that each Xi is a se-
quence x′i1 < x′i2 < · · · < x′ip ordered by increasing values of f and suppose that the Xi

share the same size p (otherwise we must consider the size of the smallest set). Finally,
let L j = {y1, j,y2, j, . . . ,yn, j : yi, j = (x1, . . . ,xi−1,x′i j,xi+1, . . . ,xn)} be the set of axis-aligned
solutions of rank j, obtained by the line searches and let M j the set of solutions of L j im-
proving x. The set M j is used to make the jth recombination of solutions. In the case where
|M j| ≤ 1, M j is completed by randomly selected (and non-improving) solutions of L j such

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 14 — #14 i
i

i
i

i
i

14 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

that |M j| ≥ 2. The jth recombined solution u j = (u j
1,u

j
2, . . . ,u

j
n) will then be defined as

u j
i =

{
x′i j if yi, j ∈M j

xi otherwise

|M j| must be greater than 2 in order to recombine an unvisited solution. Note also that if
there are more than 2 solutions of L j improving x, the recombined solution will then exploit
perfectly separability property, as in the original construction procedure.

Then, as output of the second phase, the following set of solutions is returned:

L1∪{û}.

The lefthand set gathers the best solutions on each axis. The rightmost set consists of the
best solution obtained through the recombinations. This combination strategy is depicted in
Figure 3. The level lines of a quadratic separable function f (x1,x2) = (x1−a)2 +(x2−b)2

appear as dashed lines. The sample solutions are located on the coordinate axes. Some
solutions from the recombination technique are drawn, illustrating the capacity to derive
good quality solutions. Here, since the problem is separable, the best solution x∗ naturally
derives from a combination of the best solutions on each axis.

window around x

x

x∗

Figure 3. Recombination of sample solutions calculated by line search on axes.
.

The following proposition can now be stated, proving the linear complexity of the new
construction procedure.

Proposition 2. The new construction procedure makes O(n) evaluations of f , provided that
the recombination procedure is linear in n.

Proof. The line search procedure is called n times. The cost of a line search is constant dur-
ing the search since we consider a window around the current solution whose size decreases
along with h. As a consequence, only max j(u j− l j)/hs evaluations of f are required, which
completes the proof.

The theoretical complexity is clearly reduced. But the practical efficiency strongly de-
pends on the recombination procedure. During the experimental phase, we will try to show
that the new methods reach a balance between the quality of solutions and the number of
evaluations of f .

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 15 — #15 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 15

3.2. Local improvement by direct search

The original local improvement procedure is general enough to cope with many categories
of problems since it only requires evaluating f . Moreover, after dρlo(∏

n
i=1d(ui− li)/he)e

evaluations of f , the output solution has a probability ρlo of being a h-local minimum [11].
Despite good theoretical properties, we have observed that this technique does not reach a
good practical efficiency. First, the convergence towards good solutions is not guaranteed
in general since the search is unguided and random by nature. Second, the number of
evaluations of f grows quickly according to the problem dimension and the reduction of
the discretization parameter. Lastly, tuning the density ρlo ∈ [0,1] of the neighborhood to
be considered may be a hard task.

Our goal is to implement a new derivative-free local search procedure with a better con-
vergence, by exploiting function evaluations to identify descent directions and promising
regions. To this end, we propose to implement simplex-based direct search methods. These
methods fit well into the continuous GRASP framework for many reasons. First, the dis-
cretization parameter can be used to construct simplices around the solution returned by the
construction procedure. Second, successive calls act as restarting processes, which is useful
to handle degenerated simplices.

We focus here on two simplex-based methods, namely the well-known Nelder-Mead
Simplex Search [16] presented in Section 1.2. and the Iterated Simplex Search (ISS) in-
spired by the work presented in [21]. In the ISS procedure, the simplex is initialized by
picking points along coordinate axes from x at distance h. These points are calculated as
x± h · ei where ei is the i-th unit vector, for i = 1, . . . ,n. As in NMSS, the first step is an
attempt to improve the worst solution xn+1. But in case of failure, this process is iterated
on xn, and so on. When the variable x j is processed, it suffices to replace xn+1 and xn in
NMSS by x j and x j−1. This iteration replacing the shrinkage step is expected to produce
more promising search directions, as illustrated in Figure 4.

The stopping criterion of the ISS procedure is based on three conditions. It stops when
a maximum number of evaluations of f is reached, or every vertex of the simplex has been
processed, or the difference between the best solution and the worst solution of the simplex
drops below a threshold εlo. In practice, the maximum number of evaluations of f can be
automatically assigned to 100n. This choice may lead to a balance between the two main
procedures of the continuous GRASP algorithm (construction and local improvement). Fi-
nally, it is worth noticing that parameter ρlo of the original procedure has been replaced
by εlo representing the precision of the simplex with respect to f . Tuning εlo seems more
natural in the present optimization context.

3.3. Control of discretization

The discretization parameter controls the sharpness of the construction procedure and the
local improvement procedure. During one start, this parameter ranges from an initial value
hs to a final value he, both being user-defined parameters. In practice, the value of hs can
be automatically assigned to a value involving a reasonable cost of the construction process
according to the domain bounds l and u. Tuning he is in general more difficult. Indeed a

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 16 — #16 i
i

i
i

i
i

16 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

x1

x2

x3

xr

xe

xoc

xic

x1

x2

x3

xr

xe

xoc

xic

Figure 4. Iterated Simplex Search with n = 2. On the left, the first step is to improve x3. On
the right, after a failure on x3, the process is iterated on x2.

too small value may lead to slow convergence phenomena and a large value may not lead
to reach precise enough solutions.

We propose to manage he using an Adaptive Ending Stage (AES). At the beginning of
every start, he is assigned to hs. When h becomes strictly smaller than he, which arises when
the current solution cannot be improved, then an additional step is made. The discretization
parameter h is halved and the two procedures are applied in order to improve the current
solution x. If the new solution x′ significantly improves x, that is f (x′) < f (x)− ε, then
the search is continued by dividing also he by a factor 2. Otherwise the current start is
completed. In fact, the setting strategy of parameter he is adaptive with respect to the
capacity of finding new good solutions. There is no additional parameter since ε is the
precision used in the stopping rules.

Another room for improvement consists of limiting the application of the construction
procedure. More precisely, for a given value of h, successive constructions are authorized
only if each one improves the current solution. Otherwise, either the local improvement pro-
cedure is used to improve the current solution or the discretization parameter is decreased to
explore the neighborhood more finely. This strategy will be further referred to the Stopping
Construction Condition (SCC).

4. Numerical experiments

We implemented our algorithms in C++, using standard double precision computations.
Since we will not consider CPU times in the subsequent experiments, results are indepen-
dent of the configuration of the computer.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 17 — #17 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 17

4.1. Protocols and benchmarks

The experiments performed are similar those found in some literature, see for instance
[8, 11, 21–24, 33]. For each experiment, the GAP is defined as

GAP = | f (x̂)− f (x∗)|

which corresponds to the absolute difference between the best solution found, using a given
method, x̂ and the known global minimum x∗ of the function f .

We propose the following tune of parameters. Given any problem function f and bounds
l and u, hs is set to

hs = 0.05∗minn
i=1(ui− li)

This way hs corresponds to 5% of the minimum variable range. The stopping rules
parameters δ and β are respectively set to 0.4 and 0.025. This tune allows at least 8 starts
to be performed inside a single run on any problem function. The required precision ε will
be set relatively to the required precision of each experiment. Note that in any case, we set
εlo, the precision threshold of the simplex-based direct searches, to 0.1 · ε.

The set of considered benchmark functions is showed in Table 1 and detailed in Appendix
B. The following sub-sections describe different experiments using the GAP.

Table 1. Set of benchmark functions. 44 functions whose dimensions vary between 2 and
30.

Function Dimension Function Dimension
Six-Hump Camelback (CA) 2 Beale (BE) 2
Bohachevsky (B2) 2 Booth (BO) 2
Branin (BR) 2 Easom (EA) 2
Goldstein and Price (GP) 2 Matyas (M) 2
Rastrigin (RA2) 2 Rosenbrock (R2) 2
Schwefel (SC2) 2 Shubert (SH) 2
Zakharov (Z2) 2 De Jong (SP3) 3
Hartmann (H3,4) 3 Colville (CV) 4
Perm0 (P0

4,10) 4 Perm (P4, 1
2
) 4

Power Sum (PS4,{8,18,44,114}) 4 Shekel (S4,5) 4
Shekel (S4,7) 4 Shekel (S4,10) 4
Rastrigin (RA5) 5 Rosenbrock (R5) 5
Zakharov (Z5) 5 Hartmann (H6,4) 6
Schwefel (SC6) 6 Trid (T6) 6
Griewank (GR10) 10 Rastrigin (RA10) 10
Rosenbrock (R10) 10 Sum Squares (SS10) 10
Trid (T10) 10 Zakharov (Z10) 10
Griewank (GR20) 20 Rastrigin (RA20) 20
Rosenbrock (R20) 20 Sum Squares (SS20) 20
Zakharov (Z20) 20 Powell (PW24) 24
Dixon and Price (DP25) 25 Ackley (A30) 30
Levy (L30) 30 Sphere (SP30) 30

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 18 — #18 i
i

i
i

i
i

18 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

4.2. Convergence analysis and validation of the propositions

Convergence abilities are compared here. As in [8, 11, 24] a convergence condition is
defined as

GAP≤ 10−4 ∗ | f (x∗)|+10−6 (1)

It is assumed that a method succeeds in minimizing f if x̂, through its GAP, satisfies
(1). Any presented methods are applied 100 times to the benchmark consisting of the 24
functions written in boldface in Table 1. Percentage rates PRs and average evaluations
FEs of runs which successfully converge with respect to (1) are outputted. The required
precision ε is set to 10−7.

From the proposals, several implementations of a revised C-GRASP are possible. In
order to extract the best one, convergence abilities as described above are compared. To this
end, the two measures are merged into a performance measure. The performance measure
on a given problem is defined as in [34] as

FEs ·
100
PRs

Given a set M of methods to compare and a given problem, a method A has performed
the best if its performance PA satisfies PA ≤ PB · τ, ∀B ∈ M\{A} where τ (set to 1.1) is a
smoothing factor allowing a fair comparison of stochastic methods. Therefore two methods
can be both considered as the best. Finally, the score of a method A in M is the number of
problems of the benchmark for which A is the best with respect to the previous definition.

The set of methods that will be compared are:

• starting from C-GRASP, combine the different proposed main components.

• starting from the previous best method, apply or not the proposed strategies.

This first set of implementations uses either the original or the revised construction pro-
cedure and either the Nelder-Mead Simplex Search (NMSS) or the Iterated Simplex Search
(ISS). The scores they obtain are reported in Table 2.

Table 2. Comparison of the performances of the different construction and local improve-
ment procedures

Construction Local Improvement Score
Original NMSS 2
Original ISS 3
Revised NMSS 13
Revised ISS 17

It appears clearly that the revised construction procedure outperforms its original im-
plementation. While their performances on 2-dimensional problems are equivalent due to
similar costs, the revised version performs better on higher dimensional ones.

The results also highlight the fact that the ISS direct search gives better results than
the NMSS. ISS is strictly better on higher dimensional problems. Consequently, the best
implementation is the one combining the revised construction procedure and ISS.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 19 — #19 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 19

The second set of implementations consists of the previous best one using or not the
Stopping Construction Condition (SCC) and using or not the Adaptive Ending Stage (AES).
Note that he does not have to be supplied when using AES. Otherwise, he is tuned similarly
to hs as 0.1% of the maximum variable range. The results are reported in Table 3.

Table 3. Comparison of the performances of the use of the different strategies
SCC AES Score
No No 15
No Yes 14
Yes No 18
Yes Yes 19

It follows that the SCC improves the overall performances. To be more precise, it is
clearly interesting to use it when considering the problems of 10 or 20 dimensions. Other-
wise, SCC leads to similar performances with implementations not using it.

Using AES or not does not seem to radically change the performances. On the one
hand, it is useful on problems like the Shekel functions (S4,5, S4,7 and S4,10). On the other
hand, it deteriorates the performances on functions like Easom (EA), Shubert (SH) and
Hartmann 3 (H3,4). Runs are generally stopped earlier, with the related possible advantages
or disadvantages. However, the use of AES makes the tune of C-GRASP easier since the
parameter he is no more supplied by the user. Therefore, the use of AES is preferred.

We define then the best implementation ISS-GRASP as the implementation of C-GRASP
using the revised construction procedure, the ISS as local search and the SCC and AES
strategies activated. The detailed results of ISS-GRASP on this experiment are presented in
Appendix A1.. Compared to the original C-GRASP [11], the evaluation costs have been
generally widely reduced (of about a ratio 800 on the function Z10 for instance) with only
small loss of convergence rates.

4.3. Precision within limited evaluation budget

ISS-GRASP is here subjected to a limited evaluation budget. Precision and some general
convergence results are compared with those of other metaheuristics. In this experiment an
optimality condition is defined as in [11, 24, 33]:

GAP≤
{

0.001×| f (x∗)| if f (x∗) 6= 0
0.001 if f (x∗) = 0

(2)

It is assumed that a problem function f is solved if (2) is satisfied. 100 runs are applied
on each function from Table 1, the 40 not written in italic. Results report for each function
the average GAP over all the runs after several evaluation steps, and whether (2) is satisfied.
The budget is limited to 50,000 evaluations. Stopping rules are not activated: runs are
applied until the budget is reached. Finally, the value of ε is set to 10−4.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 20 — #20 i
i

i
i

i
i

20 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

The results obtained with ISS-GRASP are compared to those of C-GRASP [11], DTSAPS

[24] and the Scatter Search of Laguna and Marti [33]. For these methods, results are taken
from their respective papers. Note that in C-GRASP [11], some results for this experiment
may contain inconsistencies. The function Z20 is difficult to solve for C-GRASP whereas it
manages to give a small GAP early (GAP of 283 after 100 evaluations as reported in [11]).
This result is surprising, knowing the high-variability of the function Z20. Thus, it probably
contains an inconsistency.

The average GAP over all tested functions, after different evaluation steps, are reported
in Table 4. The number of functions solved are shown in Figure 5. In Appendix A2.,
completely detailed results of ISS-GRASP can be found.

Table 4. Mean GAP over all the restrained first benchmarks set.
Function evaluations

Methods 100 500 1,000 5,000 10,000 20,000 50,000
Scatter Search 134.45 26.34 14.66 4.96 3.60 3.52 3.46
DTSAPS 50,400 43.06 24.26 4.22 1.80 1.70 1.29
C-GRASP 23,610.61 10,185.84 1,341.70 6.20 4.73 3.92 3.02

ISS-GRASP > 106 1,949.49 116.629 1.557 0.302 0.031 0.017

From Table 4, it appears that ISS-GRASP has a lower mean GAP than C-GRASP after
500 evaluations, and a lower than any of the other compared methods after 5,000 evalu-
ations. Individual results on each function show that no problem has a final GAP greater
than 1. In C-GRASP [11], only the function Z20 has a GAP greater than 1. For the Scatter
Search in [33], the only functions giving a final GAP higher than 1 were the function SC6,
RA10, R20 and A30 with GAP respectively equal to 118.4341, 9.9496, 2.2441 and 5.5033.
In [24], no detailed results were given for the DTSAPS.

Considering now Figure 5, it appears that ISS-GRASP solves more problems than the
other compared methods after 10,000 evaluations. Moreover, no other methods are able
to solve as many problems at this step, even when the budget is reached. However, ISS-
GRASP encounters more difficulties early. Since the local-optima are mostly treated by the
multi-start process, C-GRASP and ISS-GRASP tend to solve fewer functions than the other
neighborhood-based metaheuristic DT SAPS between 100 and 5,000 evaluations. C-GRASP
is better than ISS-GRASP on this interval budget, which is due to the ability of the original
construction procedure to solve more low dimensional problems than the revised one.

ISS-GRASP is competitive with respect to the other tested methods. It does not have
particular ease of solving some simple problems (difference in terms of functions solved in
early stages) but manages to globally perform well on the whole benchmark set even for
some more complicated functions (final total of functions solved and mean GAP).

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 21 — #21 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 21

0

5

10

15

20

25

30

35

100 500 1000 5000 10000 20000 50000

Fu
nc

tio
ns

so
lv

ed

Function evaluations

ISS-GRASP

◦

◦

◦

◦

◦
◦ ◦

◦
C-GRASP2

2

2

2

2 2
2

2
DTSAPS

∗

∗
∗

∗
∗ ∗

∗

∗
Scatter Search

4

4

4

4 4
4 4

4

Figure 5. Number of functions solved (GAP verifying (2)) over the restrained first bench-
marks set of 40 functions, as a function of function evaluations.

4.4. Strengths and weaknesses

ISS-GRASP is now applied on benchmark functions taken from CEC 2005 [34]. Given
the properties of these problems, the performances are studied, allowing us to see the
strengths or weaknesses of the proposed approach. To this end, we have selected a few
benchmark problems from the CEC 2005 [34]. Table 5 shows a brief description of the
properties of the selected functions.

Table 5. Selected problem functions from CEC 2005
Fun Full Name Properties
F2 Shifted Schwefel’s Problem 1.2 Unimodal, Non separable
F3 Shifted Rotated High Conditioned Elliptic

Function
Unimodal, Non separable, High
variations in fitness

F4 Shifted Schwefel’s Problem 1.2 with
Noise

Unimodal, Non separable, Ran-
dom noise in fitness

F5 Schwefel’s Problem 2.6 with Global Opti-
mum on bounds

Unimodal, Non separable

F9 Shifted Rastrigin’s Function Multi-modal, Separable
F10 Shifted Rotated Rastrigin’s Function Multi-modal, Non separable
F14 Shifted Rotated Expanded Schaffer’s F6 Multi-modal, Non separable

For this experiment, the same protocols as for the preceding experiment in Section 4.3.
are used. The difference is that the solving condition is now:

GAP≤ 0.001 (3)

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 22 — #22 i
i

i
i

i
i

22 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

The dimensions of each function is 10. Results (GAP values) are presented in Table 6.

Table 6. ISS-GRASP: GAP values over a selection of problem functions from CEC 2005.
Boldface GAP satisfies (3)

Function evaluations
Fun 100 500 1,000 5,000 10,000 20,000 50,000
F2 67732.7 2377.3 857.725 5.37447e-06 4.36103e-06 3.73735e-06 3.06561e-06
F3 1.9311e+09 1.21387e+07 2.84477e+06 31942.9 11846.6 1.23648 0.000121347
F4 83030.7 31644.8 18905.5 2463.95 933.222 305.503 38.5059
F5 28061.4 4408.22 2999.14 24.9873 0.134177 0.0112214 0.000889035
F9 201.337 24.9026 11.1521 0.00964914 0.00212809 3.53502e-06 3.00037e-06
F10 291.266 86.218 81.974 49.727 39.0978 30.9627 24.0143
F14 4.63138 4.43081 4.34163 4.08477 3.93758 3.83207 3.68465

ISS-GRASP seems to perform well on F2, F3 and F5. The noisy function F4 appears to
be difficult to solve. Moreover, even F3 is treated well, high variations in fitness seem to
introduce more difficulties in the solving process. Indeed, F3 is not solved until the budget
is reached. In the same way, F5 is solved by ISS-GRASP but with more difficulty. The
boundaries may not be well considered.

As attempted, F9 is solved well. The design of the construction procedure was made to
exploit the separability of F9. But on the other hand, its rotated version F10 is not solved.
ISS-GRASP does not manage to handle non-separability. Finally, it is also not able to solve
the complex function F14 for similar reasons.

Unimodal or multi-modal and separable functions appears to be the properties exploited
the most by ISS-GRASP. The introduction of noise and/or high variations in fitness tend
to raise difficulties, such as non-separability. The components of ISS-GRASP need to be
improved to deal with these difficulties.

5. Conclusion

The continuous GRASP metaheuristic is a general algorithmic scheme used to solve
unconstrained optimization problems. The exploration of the search space is implemented
by a multistart method. Good solutions are obtained by successively applying a construction
procedure and a local improvement procedure. The precision of computed solutions is
controlled by a discretization step. Specific instances of this framework have been shown
to compete well with other metaheuristics. But it appears that these techniques do not scale
well in general, requiring a huge number of function evaluations to reach precise solutions.

Our first motivation was to understand precisely the capacities of C-GRASP, and in
particular the advantage of the construction procedure. Our second motivation, based on a
precise analysis of existing algorithms, was to implement new algorithms as instances of the
general scheme. To this end, we have introduced a new construction procedure exploring
a restricted neighborhood of the current solution to construct a good quality solution. As a
consequence, the global exploration of the search space is left to the multistart method and
only a reasonable part of this space is considered in every run.

Second, we have implemented the local improvement procedure by direct searches. We
have shown that the iterated simplex search scales better than the Nelder-Mead simplex

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 23 — #23 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 23

search. Combining the revised construction procedure and the iterated simplex search leads
to a new instance of C-GRASP that is very competitive. In particular, this new algorithm
outperforms the original C-GRASP algorithm and the direct tabu search method.

Third, we have proposed to control automatically the discretization step according to a
given threshold on the number of function evaluations that the components will cost. The
discretization step is initially assigned to a value proportional to the threshold and it is
decreased until no significant improvement of the current solution can be obtained. In so
doing, two user-defined parameters are no longer required.

Several interesting directions for future research can be identified. Within the construc-
tion procedure, the neighborhood is actually built as an axis-aligned grid of points, but other
spanning directions may be more efficient for non separable problems. This can be done
for instance by using variable correlation handling techniques as in [35]. Moreover, it may
be possible to use another utility function than the objective function, which is very expen-
sive. Local improvement procedures may be selected according to problem characteristics
(separability, partial separability, dimension). Finally, good management strategies for the
multistart process may lead to being able to identify promising regions of the search space.

References

[1] R. Horst, P. Pardalos, and N. Thoai, Introduction to global optimization. Nonconvex
optimization and its applications, Kluwer Academic Publishers, 1995.

[2] E. Hansen and G. Walster, Global optimization using interval analysis. Pure and
applied mathematics, Marcel Dekker, 2004.

[3] F. Glover, “Future paths for integer programming and links to artificial intelligence,”
"Computers & Operations Research", vol. 13, pp. 533–549, May 1986.

[4] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed Optimization by Ant Colonies,”
in First European Conference on Artificial Life (ECAL), Paris, France, pp. 134–142,
1991.

[5] C. Reeves, Modern Heuristic Techniques for Combinatorial Problems. Advanced
Topics in Computer Science, McGrawHill, London, 1995.

[6] F. Glover and G. Kochenberger, eds., Handbook of Metaheuristics. Kluwer academic
publishers, 2002.

[7] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” Euro-
pean Journal of Operational Research, vol. 185, pp. 1155–1173, 2008.

[8] R. Chelouah and P. Siarry, “Tabu search applied to global optimization,” European
Journal of Operational Research, vol. 123, pp. 256–270, 2000.

[9] T. Feo and M. Resende, “Greedy randomized adaptive search procedures,” Journal of
Global Optimization, vol. 6, pp. 109–134, 1995.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 24 — #24 i
i

i
i

i
i

24 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

[10] M. Hirsch, C. Meneses, P. Pardalos, and M. Resende, “Global optimization by contin-
uous GRASP,” Optimization Letters, vol. 1, no. 2, pp. 201–212, 2006.

[11] M. Hirsch, M. Resende, and P. Pardalos, “Speeding up continuous GRASP,” Euro-
pean Journal of Operational Research, vol. 205, no. 3, pp. 507–521, 2010.

[12] C. Blum, M. B. Aguilera, A. Roli, and M. Sampels, eds., Hybrid Metaheuristics. An
Emerging Approach to Optimization, vol. 114 of Studies in Computational Intelli-
gence. Springer, 2008.

[13] V. Torczon, “On the Convergence of the Multidirectional Search Algorithm,” SIAM
Journal on Optimization, vol. 1, pp. 123–145, Feb. 1991.

[14] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: New
perspectives on some classical and modern methods,” SIAM Review, vol. 45, no. 3,
pp. pp. 385–482, 2003.

[15] R. Hooke and T. Jeeves, “Direct search solution of numerical and statistical problems,”
Journal of the ACM, vol. 8, pp. 212–221, 1961.

[16] J. Nelder and R. Mead, “A simplex method for function minimization,” The Computer
Journal, vol. 7, no. 4, pp. 308–313, 1965.

[17] K. McKinnon, “Convergence of the Nelder-Mead simplex method to a nonstationary
point,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 148–158, 1998.

[18] C. Kelley, “Detection and remediation of stagnation in the Nelder-Mead algorithm us-
ing a sufficient decrease conditions,” SIAM Journal on Optimization, vol. 10, pp. 43–
55, 1999.

[19] J. Pedroso, “Simple metaheuristics using the simplex algorithm for non-linear pro-
gramming,” in SLS’07 Proceedings of the 2007 international conference on Engi-
neering stochastic local search algorithms: designing, implementing and analyzing
effective heuristics, pp. 217–221, 2007.

[20] A. Hedar, Studies on metaheuristics for continuous global optimization. PhD thesis,
Kyoto University, 2004.

[21] A. Hedar and M. Fukushima, “Hybrid simulated annealing and direct search method
for nonlinear unconstrained global optimization,” Optimization Methods and Soft-
ware, vol. 17, pp. 891–912, 2002.

[22] A. Hedar and M. Fukushima, “Heuristic pattern search and its hybridization with sim-
ulated annealing for nonlinear global optimization,” Optimization Methods and Soft-
ware, vol. 19, pp. 291–308, 2004.

[23] A. Hedar and M. Fukushima, “Minimizing multimodal functions by simplex coding
genetic algorithm,” Optimization Methods and Software, vol. 18, pp. 265–282, 2003.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 25 — #25 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 25

[24] A. Hedar and M. Fukushima, “Tabu search directed by direct search methods for
nonlinear global optimization,” European Journal of Operational Research, vol. 170,
pp. 329–349, 2003.

[25] L. M. Hvattum and F. Glover, “Finding local optima of high-dimensional functions
using direct search methods,” European Journal of Operational Research, vol. 195,
no. 1, pp. 31 – 45, 2009.

[26] P. Festa and M. Resende, “GRASP : an annotated bibliography,” in Essays and surveys
on metaheuristics (C. Ribeiro and P. Hansen, eds.), pp. 325–367, Kluwer academic
publishers, 2002.

[27] M. Resende and C. Ribeiro, “Greedy randomized adaptive search procedures,” in
Handbook in Metaheuristics (F. Glover and G. Kochenberger, eds.), pp. 219–249,
Kluwer academic publishers, Boston, 2002.

[28] M. Hirsch, GRASP-based heuristics for continuous global optimization problems.
PhD thesis, University of Florida, 2006.

[29] W. E. Hart, “Sequential stopping rules for random optimization methods with applica-
tions to multistart local search,” SIAM Journal on Optimization, vol. 9, pp. 270–290,
May 1998.

[30] E. Birgin, E. Gozzi, M. Resende, and R. Silva, “Continuous GRASP with a local
active-set method for bound-constrained global optimization,” Journal of Global Op-
timization, vol. 48, pp. 289–310, 2010.

[31] B. Martin, X. Gandibleux, and L. Granvilliers, “Coupling C-GRASP with direct
search methods.” EVOLVE 2011, May 25-27, Luxembourg.

[32] T. M. Ugulino de Araújo, L. dos Anjos Formiga Cabral, and R. Quirino do Nasci-
mento, “Hybridizing C-GRASP metaheuristics using the adaptive pattern search
method to solve global continuous optimization problems,” GEPROS. Gestão da Pro-
dução, Operações e Sistemas., vol. 4, no. 4, pp. 155–167, 2008. (in portuguese).

[33] M. Laguna and R. Marti, “Experimental testing of advanced scatter search designs
for global optimization of multimodal functions,” Journal of Global Optimization,
vol. 33, pp. 235–255, 2005.

[34] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, and S. Tiwari, “Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on real-
parameter optimization.,” tech. rep., Nanyang Technological University, Singapore,
2005. http://www.ntu.edu.sg/home/epnsugan/.

[35] A. Karimi, H. Nobahari, and P. Siarry, “Continuous ant colony system and tabu search
algorithms hybridized for global minimization of continuous multi-minima func-
tions,” Computational Optimization and Applications, vol. 45, pp. 639–661, 2010.

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 26 — #26 i
i

i
i

i
i

26 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

A Detailed Experimental results

A1. Convergence results

The results presented here refer to the experiment described in Section 4.2..

Table 7. Convergence rates (with respect to (1)) and average number of evaluations of
successful runs for ISS-GRASP.

Fun Mean Eval. % Successful
convergences

Fun Mean Eval. % Successful
convergences

BR 98 100 % R2 214 100 %
EA 954 82 % R5 1,052 100 %
GP 186 100 % R10 4,387 100 %
M 98 100 % R20 20,082 100 %
SH 561 98 %
SP3 147 100 % Z2 105 100 %
T6 360 100 % Z5 415 100 %

Z10 2,600 100 %
H3,4 275 100 % Z20 13,444 100 %
H6,4 869 100 %

RA2 324 100 %
S4,5 1,814 99 % RA5 1,170 100 %
S4,7 1,581 100 % RA10 3,014 100 %
S4,10 1,948 95 % RA20 8,636 100 %

A2. Precision within limited evaluation budget

The results presented here refer to the experiment described in Section 4.3..

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 27 — #27 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 27

Table 8. ISS-GRASP: GAP values over the first set of benchmark functions.
Function evaluations

Fun 100 500 1,000 5,000 10,000 20,000 50,000
CA 0.185773 1.57054e-06 9.48634e-07 3.74382e-07 2.42487e-07 1.39626e-07 8.09467e-08
BE 0.379823 0.0813224 0.0358601 9.80255e-07 7.84168e-07 6.35646e-07 4.87646e-07
B2 0.117019 0.0250845 0.012537 0.00150878 0.000255162 3.45423e-05 1.32177e-06
BO 8.37733e-05 2.08549e-06 1.68781e-06 1.02332e-06 8.04433e-07 6.2709e-07 5.05435e-07
BR 0.069267 2.30108e-06 1.84896e-06 1.26605e-06 1.09113e-06 9.82816e-07 8.54016e-07
EA 0.97975 0.577119 0.353667 0.0146875 1.38341e-06 9.82156e-07 6.70088e-07
GP 15.3345 1.53719 1.88048e-06 9.08412e-07 6.53757e-07 4.81848e-07 2.82471e-07
M 1.09676e-05 1.94601e-06 1.5657e-06 8.90856e-07 7.1863e-07 5.69038e-07 4.28954e-07
R2 2.07764 2.81362e-06 1.73697e-06 8.81186e-07 6.10907e-07 4.74131e-07 3.18117e-07
SC2 7.372 2.77248e-05 2.6968e-05 2.63683e-05 2.62144e-05 2.60769e-05 2.59429e-05
SH 39.8711 5.35356 1.25289 7.62838e-06 8.00512e-06 8.22791e-06 8.3716e-06
Z2 0.00362545 1.99456e-06 1.58807e-06 8.94958e-07 7.17312e-07 5.72512e-07 4.59257e-07
SP3 0.00782038 2.89404e-06 2.1434e-06 1.34769e-06 1.08268e-06 8.29054e-07 6.08796e-07
H3,4 0.175158 0.00182942 0.000864644 1.46785e-06 1.26756e-06 9.89441e-07 7.03763e-07
CV 1437.79 0.651354 0.000858366 1.99895e-06 1.44901e-06 1.19114e-06 8.5798e-07
P0

4,10 316.846 0.00413423 0.00284131 4.43176e-05 1.01892e-05 3.86421e-06 2.00096e-06
P4, 1

2
2175 0.540259 0.0618133 0.00154182 0.000639107 0.0001803 2.58044e-05

PS4,b 35.2065 0.0356309 0.000420719 1.41257e-05 3.98483e-06 1.85488e-06 1.1038e-06
S4,5 9.1082 4.03129 2.54109 0.101506 2.24384e-06 2.68186e-06 3.09475e-06
S4,7 9.23534 4.62249 2.45257 0.159317 0.00011981 0.000120244 0.000120724
S4,10 9.26047 5.23713 3.62238 0.160939 0.000124304 0.000124719 0.000125124
H6,4 2.45182 0.0398398 0.028357 4.99458e-06 4.44917e-06 4.03723e-06 3.58457e-06
SC6 1898.7 22.1066 8.47781e-05 7.92681e-05 7.87971e-05 7.83904e-05 7.78663e-05
T6 1202.63 0.166364 4.48182e-06 2.77842e-06 2.23573e-06 1.9109e-06 1.57594e-06
GR10 173.255 0.962445 0.777594 0.296868 0.132332 0.0402642 0.0148586
RA10 136.673 5.76724 5.51632 4.89433e-06 4.12264e-06 3.57647e-06 2.9504e-06
R10 1.22742e+06 252.545 59.3774 0.251605 4.7749e-06 3.73426e-06 3.24263e-06
SS10 1115.66 0.300549 0.0349534 4.41121e-06 3.81212e-06 3.30955e-06 2.76927e-06
T10 22503.5 237.237 40.4839 4.56015e-06 3.94154e-06 3.45142e-06 2.92736e-06
Z10 4.28964e+07 37.6697 18.3621 5.33713e-06 4.36609e-06 3.79391e-06 3.07129e-06
GR20 396.786 1.177 0.864204 0.453936 0.21969 0.0542097 0.00165853
RA20 308.97 13.7855 10.9767 2.84514 6.87725e-06 5.99077e-06 5.06253e-06
R20 3.17289e+06 14263 1659.79 38.8716 10.592 0.479856 7.33608e-06
SS20 4662.72 3.39954 2.25868 1.02377e-05 6.0909e-06 5.42215e-06 4.74094e-06
Z20 8.43181e+09 37554.2 200.016 16.8748 0.383092 1.16342e-05 8.51746e-06
PW24 35033.7 4773.75 221.03 0.0625973 2.73953e-05 1.2579e-05 7.34982e-06
DP25 2.57337e+06 20255.4 2426.98 1.27028 0.680295 0.656451 0.646672
A30 20.438 20.3577 7.98171 0.872895 0.0550456 2.24355e-05 1.91957e-05
L30 362.445 341.498 0.284325 0.0548048 9.03922e-06 7.74158e-06 6.57396e-06
SP30 181.276 173.574 0.0430663 3.58283e-05 7.80805e-06 6.84126e-06 5.95088e-06

Table 9. ISS-GRASP: Average and standard deviation GAP, and number of functions solved
(with respect to (2)) on the first set of benchmark functions.

Function evaluations
Measures 100 500 1,000 5,000 10,000 20,000 50,000
Mean GAP 2.12044e+08 1949.49 116.629 1.55736 0.301596 0.0307867 0.0165918
Std. Dev. GAP 1.31623e+09 6883.07 452.65 6.53766 1.65251 0.125283 0.10092
Functions solved 2 9 14 24 34 36 37

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 28 — #28 i
i

i
i

i
i

28 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

B Benchmark Functions

(An) Ackley Function
Definition: An(x) =−20e−0.2

√
1
n ∑

n
i=1 x2

i − e
1
n ∑

n
i=1 cos(2πxi)+20+ e

Domain: [−15,30]n

Global Minimum: An(x∗) = 0
(BE) Beale Function

Definition: BE(x) = (1.5− x1− x1x2)
2 +(2.25− x1− x1x2

2)
2 +(2,625− x1− x1x3

2)
2

Domain: [−4.5,4.5]2

Global Minimum: BE(x∗) = 0
(B2) Bohachevsky Function

Definition: B2(x) = x2
1 +2x2

2−0.3cos(3πx1)−0.4cos(4πx2)+0.7
Domain: [−50,100]2

Global Minimum: B2(x∗) = 0
(BO) Booth Function

Definition: BO(x) = (x1 +2x2−7)2 +(2x1 + x2−5)2

Domain: [−10,10]2

Global Minimum: BO(x∗) = 0
(BR) Branin Function

Definition: BR(x) = (x2− 5
4π2 x2

1 +
1
π

5x1−6)2 +10(1− 1
8π
)cos(x1)+10

Domain: [−5,15]
Global Minimum: BR(x∗) = 0.397887

(CV) Colville Function (also called Wood Function)
Definition: CV (x) = 100(x2 − x2

1)
2 + (1− x1)

2 + 90(x4 − x2
3)

2 + (1− x3)2 + 10.1[(x2 −
1)2 +(x4−1)2]+19.8(x2−1)(x4−1)
Domain: [−10,10]4

Global Minimum: CV (x∗) = 0
(DPn) Dixon and Price Function

Definition: DPn(x) = (x1−1)2 +∑
n
i=2 i(2x2

i − xi−1)
2

Domain: [−10,10]n

Global Minimum: DPn(x∗) = 0
(EA) Easom Function

Definition: EA(x) =−cos(x1)cos(x2)e−(x1−π)2−(x2−π)2

Domain: [−100,100]2

Global Minimum: EA(x∗) =−1
(GP) Goldstein and Price Function

Definition: GP(x) = [1+(x1+x2+1)2(19−14x1+3x2
1−14x2+6x1x2+3x2

2)][30+(2x1−
3x2)

2(18−321 +12x2
1 +48x2−36x1x2 +27x2

2)]
Domain: [−2,2]2

Global Minimum: GP(x∗) = 3
(GRn) Griewank Function

Definition: GRn(x) = ∑
n
i=1

x2
i

4000 −∏
n
i=1 cos(xi√

i
)+1

Domain: [−300,600]n

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 29 — #29 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 29

Global Minimum: GRn(x∗) = 0
(Hn,m) Hartmann Function

Definition: Hn,m(x) =−∑
m
i=1 αie−∑

n
j=1 A(n)

i j (x j−P(n)
i j)2

Domain: [0,1]n

Global Minimum: (n = 3, m = 4) H3,4(x∗) =−3.86278
Global Minimum: (n = 6, m = 4) H6,4(x∗) =−3.32237
Parameters:

A(3) =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

P(3) = 10−4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

A(6) =

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

P(6) = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

α = [1,1.2,3,3.2]

(Ln) Levy Function
Definition: Ln(x) = sin2(πy1) + ∑

n−1
i=1 [(yi − 1)2(1 + 10sin2(πyi + 1))] + (yn − 1)2(1 +

10sin2(2πyn))
Domain: [−10,10]n

Global Minimum: Ln(x∗) = 0
Parameters: yi = 1+ xi−1

4 . ∀i = 1, · · · ,n
(M) Matyas Function

Definition: M(x) = 0.26(x2
1 + x2

2)−0.48x1x2
Domain: [−5,10]2

Global Minimum: M(x∗) = 0
(Pn,β) Perm Function

Definition: Pn,β(x) = ∑
n
k=1[∑

n
i=1(i

k +β)((xi
i)

k−1)]2

Domain: [−n,n]n

Global Minimum: Pn,β(x∗) = 0

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 30 — #30 i
i

i
i

i
i

30 Benjamin Martin, Xavier Gandibleux and Laurent Granvilliers

(P0
n,b) Perm0 Function

Definition: P0
n,β(x) = ∑

n
k=1[∑

n
i=1(i+β)(xk

i − (1
i)

k)]2

Domain: [−n,n]n

Global Minimum: P0
n,β(x

∗) = 0
(PWn) Powell Function

Definition: PWn(x)=∑

n
4
i=1

[
(x4i−3 +10x4i−2)

2 +5(x4i−1− x4i)
2 +(x4i−2−2x4i−1)

4 +10(x4i−3− x4i)
4
]

Domain: [−4,5]n

Global Minimum: PWn(x∗) = 0
(PSn,b) Power Sum Function

Definition: PSn,b(x) = ∑
n
k=1((∑

n
i=1 xk

i)−bk)
2

Domain: [0,n]n

Global Minimum (n = 4,b = {8,18,44,114}): PS4,{8,18,44,114}(x∗) = 0
(RAn) Rastrigin Function

Definition: RAn(x) = 10n+∑
n
i=1(x

2
i −10cos(2πxi))

Domain: [−2.56,5.12]n

Global Minimum: RAn(x∗) = 0
(Rn) Rosenbrock Function

Definition: Rn(x) = ∑
n−1
j=1

[
100(x2

j − x j+1)
2 +(x j−1)2

]
Domain: [−10,10]n

Global Minimum: Rn(x∗) = 0
(SCn) Schwefel Function

Definition: SCn(x) = 418.9829n−∑
n
i=1(xi sin(

√
|xi|))

Domain: [−500;500]n

Global Minimum: SCn(x∗) = 0
(S4,m) Shekel Function

Definition: S4,m(x) =−∑
m
i=1[(x−ai)

T (x−ai)+ ci]
−1

Domain: [0,10]4

Global Minimum: S4,5(x∗) = −10.15319538, S4,7(x∗) = −10.40281868, and S4,10(x∗) =
−10.53628349
Parameters:

a =

4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
3.0 7.0 3.0 7.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 3.6 7.0 3.6

c = [0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5]

i
i

“chapter_C-GRASP” — 2012/7/5 — 10:38 — page 31 — #31 i
i

i
i

i
i

CONTINUOUS-GRASP REVISITED 31

(SH) Shubert Function
Definition: SH(x) =

[
∑

5
i=1 icos[(i+1)x1 + i]

][
∑

5
i=1 icos[(i+1)x2 + i]

]
Domain: [−10,10]2

Global Minimum: SH(x∗) =−186.7309
(CA) Six-Hump CamelBack Function

Definition: CA(x) = 4x2
1−2.1x4

1 +
1
3 x6

1 + x1x2−4x2
2 +4x4

2
Domain: [−5,5]2

Global Minimum: CA(x∗) =−1.03162801
(SPn) Sphere Function

Definition: SPn(x) = ∑
n
i=1 x2

i
Domain: [−2.56,5.12]n

Global Minimum: SPn(x∗) = 0
N.B.: The De Joung Function (DJ) is a special case of the Sphere Function, i.e
DJ(x) = SP3(x)

(SSn) Sum of Squares Function
Definition: SSn(x) = ∑

n
i=1 ix2

i
Domain: [−5,10]n

Global Minimum: SSn(x∗) = 0
(Tn) Trid Function

Definition: Tn(x) = ∑
n
i=1(xi−1)2−∑

n
i=2 xixi−1

Domain: [−n2,n2]n

Global Minimum: T6(x∗) =−50 and T10(x∗) =−210
(Zn) Zakharov Function

Definition: Zn(x) = ∑
n
i=1 x2

i +(∑n
i=1 0.5ixi)

2 +(∑n
i=1 0.5ixi)

4

Domain: [−5,10]n

Global Minimum: Zn(x∗) = 0

	Introduction
	Unconstrained global optimization and metaheuristics
	Coupling metaheuristics with direct searches
	Motivations and directions of our proposals

	From GRASP to C-GRASP
	C-GRASP: versions 2006 and 2010
	Construction procedure
	Local improvement procedure
	Summary of parameters and specificities

	Revisiting C-GRASP: the version 2012
	Construction procedure with linear complexity
	Local improvement by direct search
	Control of discretization

	Numerical experiments
	Protocols and benchmarks
	Convergence analysis and validation of the propositions
	Precision within limited evaluation budget
	Strengths and weaknesses

	Conclusion
	Detailed Experimental results
	Convergence results
	Precision within limited evaluation budget

	Benchmark Functions

