Improving validated computation of Viability Kernels

Benjamin Martin® Olivier Mullier?

111X, Ecole Polytechnique
2U21S, ENSTA Paristech

13 April 2018
International Conference on Hybrid Systems: Computation and Control
Porto, Portugal

: v €4
/7 4

ENSTA

Parislech .«

ECOLE .
D GA POLYTECHNIQUE universite
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ PARIS-SACLAY

Research financially supported by the DGA MRIS
Viability kernel

Introduction Definitions

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:
x = f(x,u)
(5)
x(0) = xo

with u(t) e Y < R™ the input and x(t) € R" the states, for all t > 0.

Introduction Definitions

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:
x = f(x, u)
(5)
x(0) = xo

with u(t) e Y < R™ the input and x(t) € R" the states, for all t > 0.

Viability Kernel of K

Given a set of states K, its viability kernel Viabs(K) is the set of all initial
conditions for which there always exists a trajectory remaining inside K
for an indefinite amount of time.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Introduction Definitions

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:
x = f(x, u)
(5)
x(0) = xo

with u(t) e Y < R™ the input and x(t) € R" the states, for all t > 0.

Viability Kernel of K

Viabs(K) := {xo € K|(Ju(t) e U)(Vt € [0, +0])(p(x0, u(t), t) € K)},

©(xo, u(t), t) is the value of x(t) starting from xg with control input u(.).

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Introduction Methods

Computing the viability kernel

Motivation

Computation of validated inner-approximation of viability kernels of
non-linear continuous time (control) systems for safety analysis.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel TR

Introduction Methods

Computing the viability kernel

Computation of validated inner-approximation of viability kernels of
non-linear continuous time (control) systems for safety analysis.

Some approaches from the literature:

o discretization-based [Saint-Pierre, 1994, Deffuant et al., 2007,
Girard, 2012, Reissig et al., 2017].

@ set-oriented or Lyapunov-like methods
[Kaynama et al., 2012, She and Xue, 2013, Korda et al., 2013].

o interval based framework [Monnet et al., 2016].

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel TR

Introduction Methods

Computing the viability kernel

Computation of validated inner-approximation of viability kernels of
non-linear continuous time (control) systems for safety analysis.

Some approaches from the literature:

o discretization-based [Saint-Pierre, 1994, Deffuant et al., 2007,
Girard, 2012, Reissig et al., 2017].

@ set-oriented or Lyapunov-like methods
[Kaynama et al., 2012, She and Xue, 2013, Korda et al., 2013].

e interval based framework [Monnet et al., 2016].

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel TR

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

[. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

. improving the inner-approximation by computing iteratively its

capture basin (implemented by validated numerical integration).

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

[. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

[I. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

Capture basin

Given a target set T, the capture basin of T within K for a time horizon
tend, Capt;f"d(K, T), is the the set of initial conditions for which there
exists a trajectory reaching T before t.,q and without exiting K.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

[. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

[I. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

Capte(K, T) := {XO e K‘ (3E € [0, tena]) (3 € U) ((x0, (), F) € T }

~(Vt € [0, E]) (0 (x0, (1), t) € K))

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

[. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

[I. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

tend : (At € [0, tena]) B € U)(p (Ji(E),H)eT
Capte (K, T) = {XOGK‘ Wed 0.1])(o, ,t)eK)) }

T C Viabs(K) = Capt&™ (K, T) € Viabs(K), Vtend =0

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Introduction Methods

[llustration

Introduction Methods

Interval Analysis

Notations:
[x] = [x,X] = {xeR:x < x <X}

IR: set of real intervals. Boxes: interval vectors.

Introduction Methods

Interval Analysis

Notations:
[x] = [x,X] = {xeR:x < x <X}

IR: set of real intervals. Boxes: interval vectors.

Main tools:

Interval extensions: over-approximation of functions over interval inputs.

Contractors: contract a box removing inconsistent values (w.r.t some
properties).

Interval Newton: prove existence of solutions to a system of equations.

Validated integration: over-approximation of trajectories.

[Neumaier, 1991, Jaulin et al., 2001]

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel YR

Introduction Methods

Two phase algorithm [Monnet et al., 2016] is expensive.
= towards improving it:

Introduction Methods

Two phase algorithm [Monnet et al., 2016] is expensive.
= towards improving it:

@ enhancing the improvement phase by more efficient validated
numerical integration (done by Olivier Mullier, not detailed in this
talk)

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Introduction Methods

Two phase algorithm [Monnet et al., 2016] is expensive.
= towards improving it:

@ enhancing the improvement phase by more efficient validated
numerical integration (done by Olivier Mullier, not detailed in this
talk)

@ enhancing the first phase by generating large inner-approximations
(this talk and paper)

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Introduction Methods

Two phase algorithm [Monnet et al., 2016] is expensive.
= towards improving it:

@ enhancing the improvement phase by more efficient validated
numerical integration (done by Olivier Mullier, not detailed in this
talk)

@ enhancing the first phase by generating large inner-approximations
(this talk and paper)

Taking more time for computing larger initial inner-approximation may
reduce significantly the cost of the improvement phase.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Improving validated viability kernel computation A quantified constraint viewpoint

First phase: original method

Find a function h: R” — R of the states s.t
(Vx e K), h(x) =0 — 3Jueld, h(x,u) <0, (1)

with h(x, u) := (Vh(x), f(x, u)).

Improving validated viability kernel computation A quantified constraint viewpoint

First phase: original method

Find a function h: R" — R of the states s.t
(Vx e K), h(x) =0 — 3Jueld, h(x,u) <0, (1)

with h(x, u) := (Vh(x), f(x, u)).

Property

Let h be a function satisfying (1), define H := {x € K| h(x) < 0}. Then if
H < intK, then H < Viabs(K).

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Improving validated viability kernel computation A quantified constraint viewpoint

First phase: original method

Find a function h: R" — R of the states s.t
(Vx e K), h(x) =0 — 3Jueld, h(x,u) <0, (1)

with h(x, u) := (Vh(x), f(x, u)).

Property

Let h be a function satisfying (1), define H := {x € K| h(x) < 0}. Then if
H < intK, then H < Viabs(K).

Implementation in [Monnet et al., 2016]: construction of
Lyapunov-like function from the linearized system around equilibrium
points.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Towards a generalization

Given a family of parametric template functions h, : R” — R, find
p € P < RY such that:

(Vx € K) (hy(x) = 0 — Jueld, hy(x,u) <0) (2)
A (x e 0K — hp(x) >0) (3)

(+ find p € P maximizing vol H,)

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Towards a generalization

Given a family of parametric template functions h, : R” — R, find
p € P < RY such that:

(Vx € K) (hp(x) # 0 v Jueld, hy(x,u) <0) (2
A (x ¢ 0K v hp(x) > 0) (3)

(+ find p € P maximizing vol H,)

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Towards a generalization

Given a family of parametric template functions h, : R” — R, find
p € P < RY such that:

(Vx € K) (hp(x) # 0 v Jueld, hy(x,u) <0) (2
A (x ¢ 0K % hp(x) > 0) (3)

(+ find p € P maximizing vol H,)

Quantified Constraint Satifisaction Problem (QCSP)

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T

Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):

o FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):

o FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

@ CSC (branching algorithm on x): from a box [p] checks whether (a.)
a p € [p] satisfy the QCSP, (b.) Vp € [p], 3 x contradicting the
constraints.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):
o FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

@ CSC (branching algorithm on x): from a box [p] checks whether (a.)
a p € [p] satisfy the QCSP, (b.) Vp € [p], 3 x contradicting the
constraints.

(further reductions of parameter and state space via contractors [Chabert and Jaulin, 2009])

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

CSC-FPS: discussion

Limitations for our application

I. CSC cannot contradict (2), i.e. prove that a p satisfy:

Ix € K, hy(x) =0 AYueld, hy(x,u) = 0.

Il. Does not consider the " quality” of the returned parameter.
I1l. Uncontrolled case.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

CSC-FPS: discussion

Limitations for our application

I. CSC cannot contradict (2), i.e. prove that a p satisfy:
Ix € K, hy(x) =0 AYueld, hy(x,u) = 0.

Il. Does not consider the " quality” of the returned parameter.
I1l. Uncontrolled case.

Propositions

|. Additional validated tests to reject invalid [p].
Il. Optimization loop over the parameter space.
[11. Sampling (under-approximation of the original QCSP).

= Best FPS - CSC algorithm.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

What we propose for I.

[. : Finding counter-examples

In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (2) (uncontrolled case) — Use of parametric interval Newton
for finding counter-examples to (2).

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

What we propose for I.

[. : Finding counter-examples

In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (2) (uncontrolled case) — Use of parametric interval Newton
for finding counter-examples to (2).

Parametric interval Newton

An interval contractor AVj,)(.) : IR” — TR", with respect to a system of
equations h(y,z) = 0, h: R9"" — R" which satisfies

V[z] e IR", N, ([2]) © [z2] = Vyely], 3z€[z], h(y,z) =0

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

What we propose for I.

[. : Finding counter-examples

In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (2) (uncontrolled case) — Use of parametric interval Newton
for finding counter-examples to (2).

Parametric interval Newton

An interval contractor AVj,)(.) : IR” — TR", with respect to a system of
equations h(y,z) = 0, h: R9"" — R" which satisfies

V[z] e IR", N, ([2]) © [z2] = Vyely], 3z€[z], h(y,z) =0

In our case: y corresponds to all parameters p and n — 1 states x, and z
is the remaining state.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

[llustration

X2

Improving validated viability kernel computation Design of the algorithm

What we propose for |l

[I. - Optimizing via Branch & Bound

FPS loop is now a Branch & Bound :

o Each iteration selects a preferred box [p] (from the search tree).

o Validates with CSC a point p € [p] or try to reject all [p]. If pis
valid, cuts the branch that are worse.

@ Stops when a sufficiently good point p is found.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

What we propose for |l

[I. - Optimizing via Branch & Bound

FPS loop is now a Branch & Bound :
o Each iteration selects a preferred box [p] (from the search tree).

o Validates with CSC a point p € [p] or try to reject all [p]. If pis
valid, cuts the branch that are worse.

@ Stops when a sufficiently good point p is found.

Specificities

o Definition of a "best” parameter p. Ideal: max vol H,. Practice: min
an approximate function g(p).

o Efficient exploration strategy. Following [Neveu et al., 2016], we
chose two orderings of the parameter boxes: min LB and max UB.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Improving validated viability kernel computation Design of the algorithm

What we propose for IlI.

[11. Relaxation by sampling feasible controls

Relaxation of (2): consider a finite set of control functions
{ur, up, ..., uk}, then (2) can be relaxed to:

Vx € K hy(;éO\/(Vh ,F(x, uj)) < 0.

Choices for the u;: constant (interval) function, state feedback, . ..

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Numerical results

Numerical results

Two phase algorithm implemented in C++
o using Ibex? implementing interval analysis tools for solving
CSPs [Chabert and Jaulin, 2009],
@ and using Dynlbex 3 providing rigorous numerical integration tools
using Runge-Kutta methods for the improvement phase
[Alexandre dit Sandretto and Chapoutot, 2016].

http://www.ibex-1ib.org/
*http://perso.ensta-paristech.fr/~chapoutot/dynibex/

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

http://www.ibex-lib.org/
http://perso.ensta-paristech.fr/~chapoutot/dynibex/

Numerical results
Car on the hill

Consider the system:

X =V
{‘./ — _98lsin (1.1sin(1.2x);1.2sin(1.1x)) —0.7v +u,

with K = ([-1,13] x [-6,6])7 and u e [-3,3].

Numerical results

Car on the hill

Consider the system:

X =V
{‘./ — _98lsin <1.1sin(1.2x);1.2sin(1.1x)) —0.7v +u,

with K = ([-1,13] x [-6,6])7 and u e [-3,3].
Considering equilibrium points (x*,0) with control u = 0, we use the
following 3-parametric template function:

hp(x,v) := p1(x — x*)? + p3v? + pa(x — x*)v — 1.
Minimization of the norm of (p1, p3).

First phase stopped after 10 seconds for each equilibrium points.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Numerical results

Results

Unknown boxes == Unknown boxes ==
Inner boxes m=—x nner boxes /—=

Computed initial inner-approximation of Viabgs(K): with our new method
(left, ~ 30s); with the original method (right, ~ 5s).

u]
)
I
il
it
i
N
e
Pl

Numerical results

Results

Unknown boxes m=m Unknown boxes m=m
Inner approximation /—— Inner approximation /——=

After 5 iteration of second phase: with our new method (left); with the
original method (right).

u]
)
I
il
it
i
N
e
P

Numerical results

Results

Unknown boxes ==
Inner approximation ===

14

Final inner-approximation: 150 s with our new first phase, 300 s with the
original one.

u]
)

I

il
it
i
N
e
P

Numerical results

Results: non-convex set K

Unknown boxes mmm
Inner boxes =

-2 0 2 4 6 8 10 12 14

Initial inner-approximation with our new method (~ 50s).

u]
)
I
il
it
i

Numerical results

Results: non-convex set K

Unknown boxes mmm
Inner approximation ==

-2 0 2 4 6 8 10 12 14

After 5 iterations of the second phase.

u]
)
I
il
it
i
5
£
p)

Numerical results

Results: non-convex set K

Unknown boxes mmm
Inner approximation ==

2 4 6 8 10

Final result (~ 400s).

12

14

)
I
il
it
i
5
£
p)

Numerical results
Balancing on a rod

Consider the system:
{Yl = y(t)
ya = cos(y1(t)) (ur(t)y1(t) + ua(t)y2(t)) + 9-8Lsin(y1(2)).

using K = [~7, 5] x [-m, 7] and U = [-15,15] x [-2,2].
Same template centered on the origin.

Numerical results

Balancing on a rod

Unknown boxes mmm
Inner boxes =
T T T T T T T

21

3L

_4 1 1 1 1 I I I
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Initial inner-approximation with our new method (~ 30s).

u]
)
I
il
it
i

Numerical results

Balancing on a rod

Unknown boxes mmm
Inner approximation ==
T T T T T T T

21

31

_4 1 1 1 1 I I I
-2 -1.5 -1 -0.5 0 0.5 1 15 2

u]
)
I
il
it
i

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:
o generalization of the first-phase: solving QCSP,

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:
o generalization of the first-phase: solving QCSP,

@ higher cost, but trades favorably with the gain in the improvement
phase.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:
o generalization of the first-phase: solving QCSP,

@ higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

@ Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:
o generalization of the first-phase: solving QCSP,

@ higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

@ Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

o ldentifying promising templates.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:
o generalization of the first-phase: solving QCSP,

@ higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

@ Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

o ldentifying promising templates.

@ Quickly finding feasible parameters (see e.g.
[Hladik and Ratschan, 2014]).

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:
o generalization of the first-phase: solving QCSP,

@ higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

@ Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

o ldentifying promising templates.

@ Quickly finding feasible parameters (see e.g.
[Hladik and Ratschan, 2014]).

o (meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:
o generalization of the first-phase: solving QCSP,

@ higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

@ Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

o ldentifying promising templates.

@ Quickly finding feasible parameters (see e.g.
[Hladik and Ratschan, 2014]).

o (meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

@ second phase: effective contractors.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

Conclusion

Thank you for your attention

Code available here: http://ben-martin.fr/hscc-2018-sources/.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel T TR

http://ben-martin.fr/hscc-2018-sources/

References |

[Alexandre dit Sandretto and Chapoutot, 2016] Alexandre dit Sandretto,
J. and Chapoutot, A. (2016).

Validated explicit and implicit runge-kutta methods.
Reliable Computing, 22:79-103.

[Chabert and Jaulin, 2009] Chabert, G. and Jaulin, L. (2009).
Contractor programming.
Artificial Intelligence, 173(11):1079 — 1100.

[Deffuant et al., 2007] Deffuant, G., Chapel, L., and Martin, S. (2007).
Approximating viability kernels with support vector machines.
IEEE Transactions on Automatic Control, 52(5):933-937.

References |l

[Djaballah et al., 2017] Djaballah, A., Chapoutot, A., Kieffer, M., and
Bouissou, O. (2017).

Construction of parametric barrier functions for dynamical systems using
interval analysis.

Automatica, 78:287 — 296.

[Girard, 2012] Girard, A. (2012).

Controller synthesis for safety and reachability via approximate
bisimulation.

Automatica, 48(5):947 — 953.

[Hladik and Ratschan, 2014] Hladik, M. and Ratschan, S. (2014).
Efficient solution of a class of quantified constraints with quantifier
prefix exists-forall.

Mathematics in Computer Science, 8(3):329-340.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel [e SN

References IlI

[Ishii et al., 2012] Ishii, D., Goldsztejn, A., and Jermann, C. (2012).
Interval-based projection method for under-constrained numerical
systems.

Constraints, 17(4):432—-460.

[Jaulin et al., 2001] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.
(2001).
Applied Interval Analysis with Examples in Parameter and State
Estimation, Robust Control and Robotics.
Springer-Verlag.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel TR

References IV

[Kaynama et al., 2012] Kaynama, S., Maidens, J., Oishi, M., Mitchell,
l. M., and Dumont, G. A. (2012).
Computing the viability kernel using maximal reachable sets.
In Proceedings of the 15th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC '12, pages 55-64, New York,
NY, USA. ACM.

[Korda et al., 2013] Korda, M., Henrion, D., and Jones, C. N. (2013).
Convex computation of the maximum controlled invariant set for
discrete-time polynomial control systems.

In 52nd IEEE Conference on Decision and Control, pages 7107-7112.

[Monnet et al., 2016] Monnet, D., Ninin, J., and Jaulin, L. (2016).

Computing an inner and an outer approximation of the viability kernel.
Reliable Computing, 22(1):138-148.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel S e TSN

References V

[Neumaier, 1991] Neumaier, A. (1991).
Interval Methods for Systems of Equations.
Cambridge University Press.

[Neveu et al., 2016] Neveu, B., Trombettoni, G., and Araya, |. (2016).
Node selection strategies in interval Branch and Bound algorithms.
Journal of Global Optimization, 64(2):289-304.

[Reissig et al., 2017] Reissig, G., Weber, A., and Rungger, M. (2017).
Feedback refinement relations for the synthesis of symbolic controllers.
IEEE Transactions on Automatic Control, 62(4):1781-1796.

[Saint-Pierre, 1994] Saint-Pierre, P. (1994).
Approximation of the viability kernel.
Applied Mathematics and Optimization, 29(2):187-209.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel [S G

References VI

[She and Xue, 2013] She, Z. and Xue, B. (2013).
Computing an invariance kernel with target by computing lyapunov-like
functions.
IET Control Theory & Applications, 7(15):1932-1940.

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box [p]:
Inputs: boxes [p], [x]
Main loop (while Q # 0):

Q [plo < pop(Q);

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box [p]:
Inputs: boxes [p], [x]
Main loop (while Q # 0):
Q [plo < pop(Q);
@ Contract [p]o using some samples in [x] (proj-inter
contractor [Chabert and Jaulin, 2009]);

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel e TS OTIE T

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box [p]:
Inputs: boxes [p], [x]
Main loop (while Q # 0):

O [plo — pop(Q);
@ Contract [p]o using some samples in [x] (proj-inter
contractor [Chabert and Jaulin, 2009]);

© if empty go to 1. otherwise continue;

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel e TSP TIE T

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box [p]:
Inputs: boxes [p], [x]
Main loop (while Q # 0):

O [plo — pop(Q);
@ Contract [p]o using some samples in [x] (proj-inter
contractor [Chabert and Jaulin, 2009]);

© if empty go to 1. otherwise continue;
© apply the CSC procedure on [p]o;

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel [TS T

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box [p]:
Inputs: boxes [p], [x]
Main loop (while Q # 0):

O [plo — pop(Q);
@ Contract [p]o using some samples in [x] (proj-inter
contractor [Chabert and Jaulin, 2009]);

© if empty go to 1. otherwise continue;
© apply the CSC procedure on [p]o;
© if feasible parameter found, stop algorithm and returns it;

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel [TS T

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box [p]:
Inputs: boxes [p], [x]
Main loop (while Q # 0):

O [plo — pop(Q);
@ Contract [p]o using some samples in [x] (proj-inter
contractor [Chabert and Jaulin, 2009]);

if empty go to 1. otherwise continue;
apply the CSC procedure on [p]o;

if feasible parameter found, stop algorithm and returns it;

© 000

else if no feasible parameter exists go to 1.;

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel S T T

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box [p]:
Inputs: boxes [p], [x]
Main loop (while Q # 0):

o
2]

©0 000

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel S T

[plo < pop(Q);
Contract [p]o using some samples in [x] (proj-inter
contractor [Chabert and Jaulin, 2009]);

if empty go to 1. otherwise continue;

apply the CSC procedure on [p]o;

if feasible parameter found, stop algorithm and returns it;
else if no feasible parameter exists go to 1.;

otherwise branch on [p]o, go to 1,;

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box [p]:
Inputs: boxes [p], [x]
Main loop (while Q # 0):

O [plo — pop(Q);
@ Contract [p]o using some samples in [x] (proj-inter
contractor [Chabert and Jaulin, 2009]);

if empty go to 1. otherwise continue;
apply the CSC procedure on [p]o;
if feasible parameter found, stop algorithm and returns it;

else if no feasible parameter exists go to 1.;

©0 000

otherwise branch on [p]o, go to 1,;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in [p].

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel S T

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box [x]:
Inputs: boxes [p], [x], a point g € [p]
Main loop (while S # 0)

@ [x]o < pop(S);

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box [x]:
Inputs: boxes [p], [x], a point p € [p]
Main loop (while S # 0)

Q [xJo < pop(S);
@ Contract [x]o with respect to j;

Viability kernel

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box [x]:
Inputs: boxes [p], [x], a point p € [p]
Main loop (while S # 0)

O [x]o < pop(S);
@ Contract [x]o with respect to j;
© if constraint locally satisfied for p, go to 1.;

Viability kernel

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box [x]:
Inputs: boxes [p], [x], a point p € [p]
Main loop (while S # 0)

O [x]o < pop(S);
@ Contract [x]o with respect to j;
© if constraint locally satisfied for p, go to 1.;

Q try to find a x € [x]op not satisfying the constraints for all p € [p], if
one found returns "no feasible parameter”;

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel S TSN

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box [x]:
Inputs: boxes [p], [x], a point p € [p]
Main loop (while S # 0)

O [x]o < pop(S);
@ Contract [x]o with respect to j;
© if constraint locally satisfied for p, go to 1.;

Q try to find a x € [x]op not satisfying the constraints for all p € [p], if
one found returns "no feasible parameter”;

@ otherwise branch on [x]o, go to 1.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel S TSN

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box [x]:
Inputs: boxes [p], [x], a point p € [p]
Main loop (while S # 0)

O [x]o < pop(S);
@ Contract [x]o with respect to j;
© if constraint locally satisfied for p, go to 1.;

Q try to find a x € [x]op not satisfying the constraints for all p € [p], if
one found returns "no feasible parameter”;

@ otherwise branch on [x]o, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p satisfies the QCSP.

Benjamin Martin (LIX, Ecole Polytechnique) Viability kernel S TSN

	Introduction
	Definitions
	Methods

	Improving validated viability kernel computation
	A quantified constraint viewpoint
	Design of the algorithm

	Numerical results
	Conclusion
	Appendix

