
Improving validated computation of Viability Kernels

Benjamin Martin1 Olivier Mullier2

1LIX, École Polytechnique
2U2IS, ENSTA Paristech

13 April 2018
International Conference on Hybrid Systems: Computation and Control

Porto, Portugal

Research financially supported by the DGA MRIS
Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 1 / 23

Introduction Definitions

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 2 / 23

Introduction Definitions

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.

Viability Kernel of K

Given a set of states K , its viability kernel ViabSpK q is the set of all initial
conditions for which there always exists a trajectory remaining inside K
for an indefinite amount of time.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 2 / 23

Introduction Definitions

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.

Viability Kernel of K

ViabSpK q :“ tx0 P K |pDuptq P Uqp@t P r0,`8sqpϕpx0, uptq, tq P K qu,

ϕpx0, uptq, tq is the value of xptq starting from x0 with control input up.q.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 2 / 23

Introduction Methods

Computing the viability kernel

Motivation

Computation of validated inner-approximation of viability kernels of
non-linear continuous time (control) systems for safety analysis.

Some approaches from the literature:

discretization-based [Saint-Pierre, 1994, Deffuant et al., 2007,
Girard, 2012, Reissig et al., 2017].

set-oriented or Lyapunov-like methods
[Kaynama et al., 2012, She and Xue, 2013, Korda et al., 2013].

interval based framework [Monnet et al., 2016].

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 3 / 23

Introduction Methods

Computing the viability kernel

Motivation

Computation of validated inner-approximation of viability kernels of
non-linear continuous time (control) systems for safety analysis.

Some approaches from the literature:

discretization-based [Saint-Pierre, 1994, Deffuant et al., 2007,
Girard, 2012, Reissig et al., 2017].

set-oriented or Lyapunov-like methods
[Kaynama et al., 2012, She and Xue, 2013, Korda et al., 2013].

interval based framework [Monnet et al., 2016].

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 3 / 23

Introduction Methods

Computing the viability kernel

Motivation

Computation of validated inner-approximation of viability kernels of
non-linear continuous time (control) systems for safety analysis.

Some approaches from the literature:

discretization-based [Saint-Pierre, 1994, Deffuant et al., 2007,
Girard, 2012, Reissig et al., 2017].

set-oriented or Lyapunov-like methods
[Kaynama et al., 2012, She and Xue, 2013, Korda et al., 2013].

interval based framework [Monnet et al., 2016].

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 3 / 23

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

T Ď ViabSpK q ùñ CapttendS pK ,T q Ď ViabSpK q, @tend ě 0

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 4 / 23

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

T Ď ViabSpK q ùñ CapttendS pK ,T q Ď ViabSpK q, @tend ě 0

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 4 / 23

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

T Ď ViabSpK q ùñ CapttendS pK ,T q Ď ViabSpK q, @tend ě 0

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 4 / 23

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

Capture basin

Given a target set T , the capture basin of T within K for a time horizon
tend, CapttendS pK ,T q, is the the set of initial conditions for which there
exists a trajectory reaching T before tend and without exiting K .

T Ď ViabSpK q ùñ CapttendS pK ,T q Ď ViabSpK q, @tend ě 0

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 4 / 23

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

Capture basin

CapttendS pK ,T q :“

"

x0 P K

ˇ

ˇ

ˇ

ˇ

pDt̃ P r0, tendsqpDũ P Uqpϕpx0, ũpt̃q, t̃q P T
^p@t P r0, t̃sqpϕpx0, ũptq, tq P K qq

*

T Ď ViabSpK q ùñ CapttendS pK ,T q Ď ViabSpK q, @tend ě 0

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 4 / 23

Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

Capture basin

CapttendS pK ,T q :“

"

x0 P K

ˇ

ˇ

ˇ

ˇ

pDt̃ P r0, tendsqpDũ P Uqpϕpx0, ũpt̃q, t̃q P T
^p@t P r0, t̃sqpϕpx0, ũptq, tq P K qq

*

T Ď ViabSpK q ùñ CapttendS pK ,T q Ď ViabSpK q, @tend ě 0

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 4 / 23

Introduction Methods

Illustration

rxs1

rxs2

rxs3

rxs4

T Ď ViabSpK q

K

ViabSpK q

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 5 / 23

Introduction Methods

Interval Analysis

Notations:
rxs “ rx , xs “ tx P R : x ď x ď xu.

IR: set of real intervals. Boxes: interval vectors.

Main tools:

Interval extensions: over-approximation of functions over interval inputs.

Contractors: contract a box removing inconsistent values (w.r.t some
properties).

Interval Newton: prove existence of solutions to a system of equations.

Validated integration: over-approximation of trajectories.

[Neumaier, 1991, Jaulin et al., 2001]

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 6 / 23

Introduction Methods

Interval Analysis

Notations:
rxs “ rx , xs “ tx P R : x ď x ď xu.

IR: set of real intervals. Boxes: interval vectors.

Main tools:

Interval extensions: over-approximation of functions over interval inputs.

Contractors: contract a box removing inconsistent values (w.r.t some
properties).

Interval Newton: prove existence of solutions to a system of equations.

Validated integration: over-approximation of trajectories.

[Neumaier, 1991, Jaulin et al., 2001]

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 6 / 23

Introduction Methods

Goal

Two phase algorithm [Monnet et al., 2016] is expensive.
ùñ towards improving it:

enhancing the improvement phase by more efficient validated
numerical integration (done by Olivier Mullier, not detailed in this
talk)

enhancing the first phase by generating large inner-approximations
(this talk and paper)

Idea

Taking more time for computing larger initial inner-approximation may
reduce significantly the cost of the improvement phase.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 23

Introduction Methods

Goal

Two phase algorithm [Monnet et al., 2016] is expensive.
ùñ towards improving it:

enhancing the improvement phase by more efficient validated
numerical integration (done by Olivier Mullier, not detailed in this
talk)

enhancing the first phase by generating large inner-approximations
(this talk and paper)

Idea

Taking more time for computing larger initial inner-approximation may
reduce significantly the cost of the improvement phase.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 23

Introduction Methods

Goal

Two phase algorithm [Monnet et al., 2016] is expensive.
ùñ towards improving it:

enhancing the improvement phase by more efficient validated
numerical integration (done by Olivier Mullier, not detailed in this
talk)

enhancing the first phase by generating large inner-approximations
(this talk and paper)

Idea

Taking more time for computing larger initial inner-approximation may
reduce significantly the cost of the improvement phase.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 23

Introduction Methods

Goal

Two phase algorithm [Monnet et al., 2016] is expensive.
ùñ towards improving it:

enhancing the improvement phase by more efficient validated
numerical integration (done by Olivier Mullier, not detailed in this
talk)

enhancing the first phase by generating large inner-approximations
(this talk and paper)

Idea

Taking more time for computing larger initial inner-approximation may
reduce significantly the cost of the improvement phase.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 23

Improving validated viability kernel computation A quantified constraint viewpoint

First phase: original method

Find a function h : Rn Ñ R of the states s.t

p@x P K q, hpxq “ 0 ùñ Du P U , 9hpx , uq ă 0, (1)

with 9hpx , uq :“ x∇xhpxq, f px , uqy.

Property

Let h be a function satisfying (1), define H :“ tx P K | hpxq ď 0u. Then if
H Ă intK , then H Ă ViabSpK q.

Implementation in [Monnet et al., 2016]: construction of
Lyapunov-like function from the linearized system around equilibrium
points.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 23

Improving validated viability kernel computation A quantified constraint viewpoint

First phase: original method

Find a function h : Rn Ñ R of the states s.t

p@x P K q, hpxq “ 0 ùñ Du P U , 9hpx , uq ă 0, (1)

with 9hpx , uq :“ x∇xhpxq, f px , uqy.

Property

Let h be a function satisfying (1), define H :“ tx P K | hpxq ď 0u. Then if
H Ă intK , then H Ă ViabSpK q.

Implementation in [Monnet et al., 2016]: construction of
Lyapunov-like function from the linearized system around equilibrium
points.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 23

Improving validated viability kernel computation A quantified constraint viewpoint

First phase: original method

Find a function h : Rn Ñ R of the states s.t

p@x P K q, hpxq “ 0 ùñ Du P U , 9hpx , uq ă 0, (1)

with 9hpx , uq :“ x∇xhpxq, f px , uqy.

Property

Let h be a function satisfying (1), define H :“ tx P K | hpxq ď 0u. Then if
H Ă intK , then H Ă ViabSpK q.

Implementation in [Monnet et al., 2016]: construction of
Lyapunov-like function from the linearized system around equilibrium
points.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 23

Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Towards a generalization

Given a family of parametric template functions hp : Rn Ñ R, find
p P P Ă Rq such that:

p@x P K q phppxq ‰ 0 _ Du P U , 9hppx , uq ă 0q (2)

^ px R BK _ hppxq ą 0q (3)

(+ find p P P maximizing vol Hp)

Quantified Constraint Satifisaction Problem (QCSP)

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 9 / 23

Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Towards a generalization

Given a family of parametric template functions hp : Rn Ñ R, find
p P P Ă Rq such that:

p@x P K q phppxq “ 0 ùñ Du P U , 9hppx , uq ă 0q (2)

^ px P BK ùñ hppxq ą 0q (3)

(+ find p P P maximizing vol Hp)

Quantified Constraint Satifisaction Problem (QCSP)

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 9 / 23

Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Towards a generalization

Given a family of parametric template functions hp : Rn Ñ R, find
p P P Ă Rq such that:

p@x P K q phppxq ‰ 0 _ Du P U , 9hppx , uq ă 0q (2)

^ px R BK _ hppxq ą 0q (3)

(+ find p P P maximizing vol Hp)

Quantified Constraint Satifisaction Problem (QCSP)

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 9 / 23

Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Towards a generalization

Given a family of parametric template functions hp : Rn Ñ R, find
p P P Ă Rq such that:

p@x P K q phppxq ‰ 0 _ Du P U , 9hppx , uq ă 0q (2)

^ px R BK _ hppxq ą 0q (3)

(+ find p P P maximizing vol Hp)

Quantified Constraint Satifisaction Problem (QCSP)

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 9 / 23

Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):

FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

CSC (branching algorithm on x): from a box rps checks whether (a.)
a p̃ P rps satisfy the QCSP, (b.) @p P rps, D x contradicting the
constraints.

(further reductions of parameter and state space via contractors [Chabert and Jaulin, 2009])

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 10 / 23

Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):

FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

CSC (branching algorithm on x): from a box rps checks whether (a.)
a p̃ P rps satisfy the QCSP, (b.) @p P rps, D x contradicting the
constraints.

(further reductions of parameter and state space via contractors [Chabert and Jaulin, 2009])

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 10 / 23

Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):

FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

CSC (branching algorithm on x): from a box rps checks whether (a.)
a p̃ P rps satisfy the QCSP, (b.) @p P rps, D x contradicting the
constraints.

(further reductions of parameter and state space via contractors [Chabert and Jaulin, 2009])

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 10 / 23

Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):

FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

CSC (branching algorithm on x): from a box rps checks whether (a.)
a p̃ P rps satisfy the QCSP, (b.) @p P rps, D x contradicting the
constraints.

(further reductions of parameter and state space via contractors [Chabert and Jaulin, 2009])

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 10 / 23

Improving validated viability kernel computation Design of the algorithm

CSC-FPS: discussion

Limitations for our application

I. CSC cannot contradict (2), i.e. prove that a p satisfy:

Dx P K , hppxq “ 0^ @u P U , 9hppx , uq ě 0.

II. Does not consider the ”quality” of the returned parameter.
III. Uncontrolled case.

Propositions

I. Additional validated tests to reject invalid rps.
II. Optimization loop over the parameter space.
III. Sampling (under-approximation of the original QCSP).

ùñ Best FPS - CSC algorithm.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 11 / 23

Improving validated viability kernel computation Design of the algorithm

CSC-FPS: discussion

Limitations for our application

I. CSC cannot contradict (2), i.e. prove that a p satisfy:

Dx P K , hppxq “ 0^ @u P U , 9hppx , uq ě 0.

II. Does not consider the ”quality” of the returned parameter.
III. Uncontrolled case.

Propositions

I. Additional validated tests to reject invalid rps.
II. Optimization loop over the parameter space.
III. Sampling (under-approximation of the original QCSP).

ùñ Best FPS - CSC algorithm.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 11 / 23

Improving validated viability kernel computation Design of the algorithm

What we propose for I.

I. : Finding counter-examples

In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (2) (uncontrolled case) Ñ Use of parametric interval Newton
for finding counter-examples to (2).

Parametric interval Newton

An interval contractor Nrysp.q : IRn Ñ IRn, with respect to a system of
equations hpy , zq “ 0, h : Rq`n Ñ Rn which satisfies

@rzs P IRn, Nrysprzsq Ă rzs ùñ @y P ry s, Dz P rzs, hpy , zq “ 0

In our case: y corresponds to all parameters p and n ´ 1 states x , and z
is the remaining state.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 12 / 23

Improving validated viability kernel computation Design of the algorithm

What we propose for I.

I. : Finding counter-examples

In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (2) (uncontrolled case) Ñ Use of parametric interval Newton
for finding counter-examples to (2).

Parametric interval Newton

An interval contractor Nrysp.q : IRn Ñ IRn, with respect to a system of
equations hpy , zq “ 0, h : Rq`n Ñ Rn which satisfies

@rzs P IRn, Nrysprzsq Ă rzs ùñ @y P ry s, Dz P rzs, hpy , zq “ 0

In our case: y corresponds to all parameters p and n ´ 1 states x , and z
is the remaining state.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 12 / 23

Improving validated viability kernel computation Design of the algorithm

What we propose for I.

I. : Finding counter-examples

In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (2) (uncontrolled case) Ñ Use of parametric interval Newton
for finding counter-examples to (2).

Parametric interval Newton

An interval contractor Nrysp.q : IRn Ñ IRn, with respect to a system of
equations hpy , zq “ 0, h : Rq`n Ñ Rn which satisfies

@rzs P IRn, Nrysprzsq Ă rzs ùñ @y P ry s, Dz P rzs, hpy , zq “ 0

In our case: y corresponds to all parameters p and n ´ 1 states x , and z
is the remaining state.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 12 / 23

Improving validated viability kernel computation Design of the algorithm

Illustration

x1

x2

rhsrpspxq ă 0 rhsrpspxq Q 0

r 9hsrpspxq ě 0
rxs

Nprps,rx1sq
prx2sq

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 13 / 23

Improving validated viability kernel computation Design of the algorithm

What we propose for II

II. : Optimizing via Branch & Bound

FPS loop is now a Branch & Bound :

Each iteration selects a preferred box rps (from the search tree).

Validates with CSC a point p P rps or try to reject all rps. If p is
valid, cuts the branch that are worse.

Stops when a sufficiently good point p̂ is found.

Specificities

Definition of a ”best” parameter p. Ideal: max vol Hp. Practice: min
an approximate function gppq.

Efficient exploration strategy. Following [Neveu et al., 2016], we
chose two orderings of the parameter boxes: min LB and max UB.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 14 / 23

Improving validated viability kernel computation Design of the algorithm

What we propose for II

II. : Optimizing via Branch & Bound

FPS loop is now a Branch & Bound :

Each iteration selects a preferred box rps (from the search tree).

Validates with CSC a point p P rps or try to reject all rps. If p is
valid, cuts the branch that are worse.

Stops when a sufficiently good point p̂ is found.

Specificities

Definition of a ”best” parameter p. Ideal: max vol Hp. Practice: min
an approximate function gppq.

Efficient exploration strategy. Following [Neveu et al., 2016], we
chose two orderings of the parameter boxes: min LB and max UB.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 14 / 23

Improving validated viability kernel computation Design of the algorithm

What we propose for III.

III. Relaxation by sampling feasible controls

Relaxation of (2): consider a finite set of control functions
tu1, u2, . . . , uku, then (2) can be relaxed to:

@x P K hppxq ‰ 0
k
ł

i“1

x∇xhppxq, f px , ui qy ă 0.

Choices for the ui : constant (interval) function, state feedback, . . .

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 15 / 23

Numerical results

Numerical results

Two phase algorithm implemented in C++

using Ibex2 implementing interval analysis tools for solving
CSPs [Chabert and Jaulin, 2009],

and using DynIbex 3 providing rigorous numerical integration tools
using Runge-Kutta methods for the improvement phase
[Alexandre dit Sandretto and Chapoutot, 2016].

2http://www.ibex-lib.org/
3http://perso.ensta-paristech.fr/~chapoutot/dynibex/

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 16 / 23

http://www.ibex-lib.org/
http://perso.ensta-paristech.fr/~chapoutot/dynibex/

Numerical results

Car on the hill

Consider the system:

#

9x “ v

9v “ ´9.81 sin
´

1.1 sinp1.2xq´1.2 sinp1.1xq
2

¯

´ 0.7v ` u,

with K “ pr´1, 13s ˆ r´6, 6sqT and u P r´3, 3s.

Considering equilibrium points px˚, 0q with control u “ 0, we use the
following 3-parametric template function:

hppx , vq :“ p1px ´ x˚q2 ` p3v
2 ` p2px ´ x˚qv ´ 1.

Minimization of the norm of pp1, p3q.
First phase stopped after 10 seconds for each equilibrium points.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 17 / 23

Numerical results

Car on the hill

Consider the system:

#

9x “ v

9v “ ´9.81 sin
´

1.1 sinp1.2xq´1.2 sinp1.1xq
2

¯

´ 0.7v ` u,

with K “ pr´1, 13s ˆ r´6, 6sqT and u P r´3, 3s.
Considering equilibrium points px˚, 0q with control u “ 0, we use the
following 3-parametric template function:

hppx , vq :“ p1px ´ x˚q2 ` p3v
2 ` p2px ´ x˚qv ´ 1.

Minimization of the norm of pp1, p3q.
First phase stopped after 10 seconds for each equilibrium points.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 17 / 23

Numerical results

Results

-6

-4

-2

0

2

4

6

-2 0 2 4 6 8 10 12 14

Unknown boxes
Inner boxes

-6

-4

-2

0

2

4

6

-2 0 2 4 6 8 10 12 14

Unknown boxes
Inner boxes

Computed initial inner-approximation of ViabSpK q: with our new method
(left, „ 30s); with the original method (right, „ 5s).

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 18 / 23

Numerical results

Results

-6

-4

-2

0

2

4

6

-2 0 2 4 6 8 10 12 14

Unknown boxes
Inner approximation

-6

-4

-2

0

2

4

6

-2 0 2 4 6 8 10 12 14

Unknown boxes
Inner approximation

After 5 iteration of second phase: with our new method (left); with the
original method (right).

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 18 / 23

Numerical results

Results

-6

-4

-2

0

2

4

6

-2 0 2 4 6 8 10 12 14

Unknown boxes
Inner approximation

Final inner-approximation: 150 s with our new first phase, 300 s with the
original one.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 18 / 23

Numerical results

Results: non-convex set K

-6

-4

-2

0

2

4

6

-2 0 2 4 6 8 10 12 14

Unknown boxes
Inner boxes

Initial inner-approximation with our new method („ 50s).

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 19 / 23

Numerical results

Results: non-convex set K

-6

-4

-2

0

2

4

6

-2 0 2 4 6 8 10 12 14

Unknown boxes
Inner approximation

After 5 iterations of the second phase.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 19 / 23

Numerical results

Results: non-convex set K

-6

-4

-2

0

2

4

6

-2 0 2 4 6 8 10 12 14

Unknown boxes
Inner approximation

Final result („ 400s).

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 19 / 23

Numerical results

Balancing on a rod

Consider the system:

#

9y1 “ y2ptq

9y2 “ cospy1ptqq pu1ptqy1ptq ` u2ptqy2ptqq ` 9.81 sinpy1ptqq.

using K “ r´π
2 ,

π
2 s ˆ r´π, πs and U “ r´15, 15s ˆ r´2, 2s.

Same template centered on the origin.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 20 / 23

Numerical results

Balancing on a rod

-4

-3

-2

-1

0

1

2

3

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Unknown boxes
Inner boxes

Initial inner-approximation with our new method („ 30s).

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 21 / 23

Numerical results

Balancing on a rod

-4

-3

-2

-1

0

1

2

3

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Unknown boxes
Inner approximation

Final inner-approximation („ 680s).

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 21 / 23

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 22 / 23

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 22 / 23

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 22 / 23

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 22 / 23

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 22 / 23

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 22 / 23

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 22 / 23

Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 22 / 23

Conclusion

Thank you for your attention

Code available here: http://ben-martin.fr/hscc-2018-sources/.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 23 / 23

http://ben-martin.fr/hscc-2018-sources/

References I

[Alexandre dit Sandretto and Chapoutot, 2016] Alexandre dit Sandretto,
J. and Chapoutot, A. (2016).
Validated explicit and implicit runge-kutta methods.
Reliable Computing, 22:79–103.

[Chabert and Jaulin, 2009] Chabert, G. and Jaulin, L. (2009).
Contractor programming.
Artificial Intelligence, 173(11):1079 – 1100.

[Deffuant et al., 2007] Deffuant, G., Chapel, L., and Martin, S. (2007).
Approximating viability kernels with support vector machines.
IEEE Transactions on Automatic Control, 52(5):933–937.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 1 / 8

References II

[Djaballah et al., 2017] Djaballah, A., Chapoutot, A., Kieffer, M., and
Bouissou, O. (2017).
Construction of parametric barrier functions for dynamical systems using
interval analysis.
Automatica, 78:287 – 296.

[Girard, 2012] Girard, A. (2012).
Controller synthesis for safety and reachability via approximate
bisimulation.
Automatica, 48(5):947 – 953.

[Hlad́ık and Ratschan, 2014] Hlad́ık, M. and Ratschan, S. (2014).
Efficient solution of a class of quantified constraints with quantifier
prefix exists-forall.
Mathematics in Computer Science, 8(3):329–340.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 2 / 8

References III

[Ishii et al., 2012] Ishii, D., Goldsztejn, A., and Jermann, C. (2012).
Interval-based projection method for under-constrained numerical
systems.
Constraints, 17(4):432–460.

[Jaulin et al., 2001] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.
(2001).
Applied Interval Analysis with Examples in Parameter and State
Estimation, Robust Control and Robotics.
Springer-Verlag.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 3 / 8

References IV

[Kaynama et al., 2012] Kaynama, S., Maidens, J., Oishi, M., Mitchell,
I. M., and Dumont, G. A. (2012).
Computing the viability kernel using maximal reachable sets.
In Proceedings of the 15th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC ’12, pages 55–64, New York,
NY, USA. ACM.

[Korda et al., 2013] Korda, M., Henrion, D., and Jones, C. N. (2013).
Convex computation of the maximum controlled invariant set for
discrete-time polynomial control systems.
In 52nd IEEE Conference on Decision and Control, pages 7107–7112.

[Monnet et al., 2016] Monnet, D., Ninin, J., and Jaulin, L. (2016).
Computing an inner and an outer approximation of the viability kernel.
Reliable Computing, 22(1):138–148.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 4 / 8

References V

[Neumaier, 1991] Neumaier, A. (1991).
Interval Methods for Systems of Equations.
Cambridge University Press.

[Neveu et al., 2016] Neveu, B., Trombettoni, G., and Araya, I. (2016).
Node selection strategies in interval Branch and Bound algorithms.
Journal of Global Optimization, 64(2):289–304.

[Reissig et al., 2017] Reissig, G., Weber, A., and Rungger, M. (2017).
Feedback refinement relations for the synthesis of symbolic controllers.
IEEE Transactions on Automatic Control, 62(4):1781–1796.

[Saint-Pierre, 1994] Saint-Pierre, P. (1994).
Approximation of the viability kernel.
Applied Mathematics and Optimization, 29(2):187–209.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 5 / 8

References VI

[She and Xue, 2013] She, Z. and Xue, B. (2013).
Computing an invariance kernel with target by computing lyapunov-like
functions.
IET Control Theory & Applications, 7(15):1932–1940.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 6 / 8

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 8

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 8

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 8

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 8

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 8

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 8

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 8

CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 7 / 8

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box rxs:
Inputs: boxes rps, rxs, a point p̃ P rps
Main loop (while S ‰ 0)

1 rxs0 Ð poppSq;

2 Contract rxs0 with respect to p̃;

3 if constraint locally satisfied for p̃, go to 1.;

4 try to find a x P rxs0 not satisfying the constraints for all p P rps, if
one found returns ”no feasible parameter”;

5 otherwise branch on rxs0, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p̃ satisfies the QCSP.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 8

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box rxs:
Inputs: boxes rps, rxs, a point p̃ P rps
Main loop (while S ‰ 0)

1 rxs0 Ð poppSq;

2 Contract rxs0 with respect to p̃;

3 if constraint locally satisfied for p̃, go to 1.;

4 try to find a x P rxs0 not satisfying the constraints for all p P rps, if
one found returns ”no feasible parameter”;

5 otherwise branch on rxs0, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p̃ satisfies the QCSP.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 8

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box rxs:
Inputs: boxes rps, rxs, a point p̃ P rps
Main loop (while S ‰ 0)

1 rxs0 Ð poppSq;

2 Contract rxs0 with respect to p̃;

3 if constraint locally satisfied for p̃, go to 1.;

4 try to find a x P rxs0 not satisfying the constraints for all p P rps, if
one found returns ”no feasible parameter”;

5 otherwise branch on rxs0, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p̃ satisfies the QCSP.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 8

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box rxs:
Inputs: boxes rps, rxs, a point p̃ P rps
Main loop (while S ‰ 0)

1 rxs0 Ð poppSq;

2 Contract rxs0 with respect to p̃;

3 if constraint locally satisfied for p̃, go to 1.;

4 try to find a x P rxs0 not satisfying the constraints for all p P rps, if
one found returns ”no feasible parameter”;

5 otherwise branch on rxs0, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p̃ satisfies the QCSP.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 8

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box rxs:
Inputs: boxes rps, rxs, a point p̃ P rps
Main loop (while S ‰ 0)

1 rxs0 Ð poppSq;

2 Contract rxs0 with respect to p̃;

3 if constraint locally satisfied for p̃, go to 1.;

4 try to find a x P rxs0 not satisfying the constraints for all p P rps, if
one found returns ”no feasible parameter”;

5 otherwise branch on rxs0, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p̃ satisfies the QCSP.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 8

CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box rxs:
Inputs: boxes rps, rxs, a point p̃ P rps
Main loop (while S ‰ 0)

1 rxs0 Ð poppSq;

2 Contract rxs0 with respect to p̃;

3 if constraint locally satisfied for p̃, go to 1.;

4 try to find a x P rxs0 not satisfying the constraints for all p P rps, if
one found returns ”no feasible parameter”;

5 otherwise branch on rxs0, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p̃ satisfies the QCSP.

Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 8 / 8

	Introduction
	Definitions
	Methods

	Improving validated viability kernel computation
	A quantified constraint viewpoint
	Design of the algorithm

	Numerical results
	Conclusion
	Appendix

