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Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 1 / 23



Introduction Definitions

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.
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We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.

Viability Kernel of K

Given a set of states K , its viability kernel ViabSpK q is the set of all initial
conditions for which there always exists a trajectory remaining inside K
for an indefinite amount of time.
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We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.

Viability Kernel of K

ViabSpK q :“ tx0 P K |pDuptq P Uqp@t P r0,`8sqpϕpx0, uptq, tq P K qu,

ϕpx0, uptq, tq is the value of xptq starting from x0 with control input up.q.
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Introduction Methods

Computing the viability kernel

Motivation

Computation of validated inner-approximation of viability kernels of
non-linear continuous time (control) systems for safety analysis.

Some approaches from the literature:

discretization-based [Saint-Pierre, 1994, Deffuant et al., 2007,
Girard, 2012, Reissig et al., 2017].

set-oriented or Lyapunov-like methods
[Kaynama et al., 2012, She and Xue, 2013, Korda et al., 2013].

interval based framework [Monnet et al., 2016].
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Introduction Methods

Sketch of the approach [Monnet et al., 2016]

A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

T Ď ViabSpK q ùñ CapttendS pK ,T q Ď ViabSpK q, @tend ě 0
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Sketch of the approach [Monnet et al., 2016]

A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

Capture basin

Given a target set T , the capture basin of T within K for a time horizon
tend, CapttendS pK ,T q, is the the set of initial conditions for which there
exists a trajectory reaching T before tend and without exiting K .

T Ď ViabSpK q ùñ CapttendS pK ,T q Ď ViabSpK q, @tend ě 0
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A two phase method:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by validated numerical integration).

Capture basin

CapttendS pK ,T q :“

"

x0 P K

ˇ

ˇ

ˇ

ˇ

pDt̃ P r0, tendsqpDũ P Uqpϕpx0, ũpt̃q, t̃q P T
^p@t P r0, t̃sqpϕpx0, ũptq, tq P K qq

*
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Introduction Methods

Illustration

rxs1

rxs2

rxs3

rxs4

T Ď ViabSpK q

K

ViabSpK q
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Introduction Methods

Interval Analysis

Notations:
rxs “ rx , xs “ tx P R : x ď x ď xu.

IR: set of real intervals. Boxes: interval vectors.

Main tools:

Interval extensions: over-approximation of functions over interval inputs.

Contractors: contract a box removing inconsistent values (w.r.t some
properties).

Interval Newton: prove existence of solutions to a system of equations.

Validated integration: over-approximation of trajectories.

[Neumaier, 1991, Jaulin et al., 2001]
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Introduction Methods

Goal

Two phase algorithm [Monnet et al., 2016] is expensive.
ùñ towards improving it:

enhancing the improvement phase by more efficient validated
numerical integration (done by Olivier Mullier, not detailed in this
talk)

enhancing the first phase by generating large inner-approximations
(this talk and paper)

Idea

Taking more time for computing larger initial inner-approximation may
reduce significantly the cost of the improvement phase.
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Improving validated viability kernel computation A quantified constraint viewpoint

First phase: original method

Find a function h : Rn Ñ R of the states s.t

p@x P K q, hpxq “ 0 ùñ Du P U , 9hpx , uq ă 0, (1)

with 9hpx , uq :“ x∇xhpxq, f px , uqy.

Property

Let h be a function satisfying (1), define H :“ tx P K | hpxq ď 0u. Then if
H Ă intK , then H Ă ViabSpK q.

Implementation in [Monnet et al., 2016]: construction of
Lyapunov-like function from the linearized system around equilibrium
points.
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Improving validated viability kernel computation A quantified constraint viewpoint

Analysis of the first phase

Original implementation

Fast but may fail to produce large inner-approximations.

Towards a generalization

Given a family of parametric template functions hp : Rn Ñ R, find
p P P Ă Rq such that:

p@x P K q phppxq ‰ 0 _ Du P U , 9hppx , uq ă 0q (2)

^ px R BK _ hppxq ą 0q (3)

(+ find p P P maximizing vol Hp)

Quantified Constraint Satifisaction Problem (QCSP)
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Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):

FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

CSC (branching algorithm on x): from a box rps checks whether (a.)
a p̃ P rps satisfy the QCSP, (b.) @p P rps, D x contradicting the
constraints.

(further reductions of parameter and state space via contractors [Chabert and Jaulin, 2009])
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Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 10 / 23



Improving validated viability kernel computation Design of the algorithm

How to solve a QCSP

CSC-FPS Algorithm [Djaballah et al., 2017]

Validated interval algorithm for computing barrier functions (uncontrolled
case). Close to our problem.

Computable Sufficient Condition (CSC) - Feasible Point Searcher (FPS):

FPS (branching algorithm on p): explore the set of parameters, and
find a valid one (checked by CSC).

CSC (branching algorithm on x): from a box rps checks whether (a.)
a p̃ P rps satisfy the QCSP, (b.) @p P rps, D x contradicting the
constraints.

(further reductions of parameter and state space via contractors [Chabert and Jaulin, 2009])
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Improving validated viability kernel computation Design of the algorithm

CSC-FPS: discussion

Limitations for our application

I. CSC cannot contradict (2), i.e. prove that a p satisfy:

Dx P K , hppxq “ 0^ @u P U , 9hppx , uq ě 0.

II. Does not consider the ”quality” of the returned parameter.
III. Uncontrolled case.

Propositions

I. Additional validated tests to reject invalid rps.
II. Optimization loop over the parameter space.
III. Sampling (under-approximation of the original QCSP).

ùñ Best FPS - CSC algorithm.
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Improving validated viability kernel computation Design of the algorithm

What we propose for I.

I. : Finding counter-examples

In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (2) (uncontrolled case) Ñ Use of parametric interval Newton
for finding counter-examples to (2).

Parametric interval Newton

An interval contractor Nrysp.q : IRn Ñ IRn, with respect to a system of
equations hpy , zq “ 0, h : Rq`n Ñ Rn which satisfies

@rzs P IRn, Nrysprzsq Ă rzs ùñ @y P ry s, Dz P rzs, hpy , zq “ 0

In our case: y corresponds to all parameters p and n ´ 1 states x , and z
is the remaining state.
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Improving validated viability kernel computation Design of the algorithm

Illustration

x1

x2

rhsrpspxq ă 0 rhsrpspxq Q 0

r 9hsrpspxq ě 0
rxs

Nprps,rx1sq
prx2sq
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Improving validated viability kernel computation Design of the algorithm

What we propose for II

II. : Optimizing via Branch & Bound

FPS loop is now a Branch & Bound :

Each iteration selects a preferred box rps (from the search tree).

Validates with CSC a point p P rps or try to reject all rps. If p is
valid, cuts the branch that are worse.

Stops when a sufficiently good point p̂ is found.

Specificities

Definition of a ”best” parameter p. Ideal: max vol Hp. Practice: min
an approximate function gppq.

Efficient exploration strategy. Following [Neveu et al., 2016], we
chose two orderings of the parameter boxes: min LB and max UB.
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Improving validated viability kernel computation Design of the algorithm

What we propose for III.

III. Relaxation by sampling feasible controls

Relaxation of (2): consider a finite set of control functions
tu1, u2, . . . , uku, then (2) can be relaxed to:

@x P K hppxq ‰ 0
k
ł

i“1

x∇xhppxq, f px , ui qy ă 0.

Choices for the ui : constant (interval) function, state feedback, . . .
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Numerical results

Numerical results

Two phase algorithm implemented in C++

using Ibex2 implementing interval analysis tools for solving
CSPs [Chabert and Jaulin, 2009],

and using DynIbex 3 providing rigorous numerical integration tools
using Runge-Kutta methods for the improvement phase
[Alexandre dit Sandretto and Chapoutot, 2016].

2http://www.ibex-lib.org/
3http://perso.ensta-paristech.fr/~chapoutot/dynibex/
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Numerical results

Car on the hill

Consider the system:

#

9x “ v

9v “ ´9.81 sin
´

1.1 sinp1.2xq´1.2 sinp1.1xq
2

¯

´ 0.7v ` u,

with K “ pr´1, 13s ˆ r´6, 6sqT and u P r´3, 3s.

Considering equilibrium points px˚, 0q with control u “ 0, we use the
following 3-parametric template function:

hppx , vq :“ p1px ´ x˚q2 ` p3v
2 ` p2px ´ x˚qv ´ 1.

Minimization of the norm of pp1, p3q.
First phase stopped after 10 seconds for each equilibrium points.
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Numerical results

Results
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Computed initial inner-approximation of ViabSpK q: with our new method
(left, „ 30s); with the original method (right, „ 5s).
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After 5 iteration of second phase: with our new method (left); with the
original method (right).
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Results
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Numerical results

Balancing on a rod

Consider the system:

#

9y1 “ y2ptq

9y2 “ cospy1ptqq pu1ptqy1ptq ` u2ptqy2ptqq ` 9.81 sinpy1ptqq.

using K “ r´π
2 ,

π
2 s ˆ r´π, πs and U “ r´15, 15s ˆ r´2, 2s.

Same template centered on the origin.
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Numerical results

Balancing on a rod
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Conclusion

Conclusion

Improving validated algorithm [Monnet et al., 2016]:

generalization of the first-phase: solving QCSP,

higher cost, but trades favorably with the gain in the improvement
phase.

Future work:

Scalability is an issue (mainly in parameter space). Few effective
contractors on p.

Identifying promising templates.

Quickly finding feasible parameters (see e.g.
[Hlad́ık and Ratschan, 2014]).

(meta)Heuristic based optimization loop. Avoiding complete search in
the parameter space.

second phase: effective contractors.
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Conclusion

Thank you for your attention

Code available here: http://ben-martin.fr/hscc-2018-sources/.
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Benjamin Martin (LIX, École Polytechnique) Viability kernel 13 - 04 - 2018 5 / 8



References VI

[She and Xue, 2013] She, Z. and Xue, B. (2013).
Computing an invariance kernel with target by computing lyapunov-like
functions.
IET Control Theory & Applications, 7(15):1932–1940.
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CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is unknown,
otherwise no feasible parameter in rps.
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CSC-FPS (2)

CSC loop consists of a branching algorithm on an initial box rxs:
Inputs: boxes rps, rxs, a point p̃ P rps
Main loop (while S ‰ 0)

1 rxs0 Ð poppSq;

2 Contract rxs0 with respect to p̃;

3 if constraint locally satisfied for p̃, go to 1.;

4 try to find a x P rxs0 not satisfying the constraints for all p P rps, if
one found returns ”no feasible parameter”;

5 otherwise branch on rxs0, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p̃ satisfies the QCSP.
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