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1LIX, École Polytechnique, Université Paris - Saclay
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26 August 2017
International Workshop on Methods and Tools for Distributed Hybrid

Systems, Aalborg

Research financially supported by the DGA MRIS
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Introduction Viability Kernel

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.
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We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.

Goal

Given a set of safe states K , find its viability kernel: the set of all initial
conditions for which there always exists a trajectory remaining inside K for
an indefinite amount of time.
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Introduction Viability Kernel

Controlled dynamical system and viability kernel

We consider the following controlled nonlinear system:

pSq

#

9x “ f px , uq

xp0q “ x0

with uptq P U Ď Rm the input and xptq P Rn the states, for all t ě 0.

Viability Kernel

The viability kernel of a set K P Rn, is defined by:

ViabSpK q :“ tx0 P K |p@t P r0,`8sqpDuptq P Uqpϕpx0, uptq, tq P K qu,

ϕpx0, up.q, .q being a solution of pSq starting from x0 with control input
up.q.
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Introduction Literature overview

Computing the viability kernel

Some approaches from the literature:

discretization of time and states, low dimensional systems, not
guaranteed (e.g. [Muhammad et al., 2015])

high dimensional (linear) system, Lagrangian methods, ellipsoids,
finite time horizon (e.g. [Kaynama et al., 2012])

polynomial system, iterative reachability analysis via Lyapunov-like
functions (e.g. [She and Xue, 2013])

In [Monnet et al., 2015], a two phase framework implemented by
interval-based methods:

I. build an initial inner-approximation of the viability kernel
(implemented by construction of Lyapunov-like functions)

II. improving the inner-approximation by computing iteratively its
capture basin (implemented by guaranteed numerical integration).
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Introduction Literature overview

Illustration

Capture basin

Given a target set T , the capture basin of T within K for a time horizon
tend is defined by:

CapttendS pK ,T q :“

"

x0 P K

ˇ

ˇ

ˇ

ˇ

pDt̃ P r0, tendsqpDũ P Uqpϕpx0, ũpt̃q, t̃q P T
^p@t P r0, t̃sqpϕpx0, ũptq, tq P K qq

*

Main idea: If T Ď ViabSpK q, then CapttendS pK ,T q Ď ViabSpK q for any
tend ě 0.
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Introduction Literature overview

Illustration

Taken from [Monnet et al., 2015]
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Introduction Literature overview

Interval analysis

Intervals

An interval rxs denotes a connected set of real values, e.g.

rxs “ rx , xs “ tx P R : x ď x ď xu.

Vectors of intervals are called boxes. The set of real intervals is denoted
IR.

Intervals replace real computations, allowing analysis over set of values

safe over-approximation by interval extension of functions (via interval
arithmetic)

proofs of existence and uniqueness of solutions to system of equations
e.g. via interval Newton methods

safe removal of inconsistent values via interval contractors
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Benjamin Martin (LIX, École Polytechnique) Rigorous computation of viability kernel 26 August 2017 6 / 23



Introduction Literature overview

Interval analysis

Intervals

An interval rxs denotes a connected set of real values, e.g.

rxs “ rx , xs “ tx P R : x ď x ď xu.

Vectors of intervals are called boxes. The set of real intervals is denoted
IR.

Intervals replace real computations, allowing analysis over set of values

safe over-approximation by interval extension of functions (via interval
arithmetic)

proofs of existence and uniqueness of solutions to system of equations
e.g. via interval Newton methods

safe removal of inconsistent values via interval contractors
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Introduction Literature overview

Goal

Starting from the framework of [Monnet et al., 2015]:

enhancing the improvement phase by guaranteed numerical
integration (done by Olivier Mullier, not detailed in this talk)

enhancing the first phase by generating large inner-approximations
(this talk)

Motivation

Taking more time for computing larger initial inner-approximation may
reduce significantly the cost of the improvement phase.
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Benjamin Martin (LIX, École Polytechnique) Rigorous computation of viability kernel 26 August 2017 7 / 23



Introduction Literature overview

Goal

Starting from the framework of [Monnet et al., 2015]:

enhancing the improvement phase by guaranteed numerical
integration (done by Olivier Mullier, not detailed in this talk)

enhancing the first phase by generating large inner-approximations
(this talk)

Motivation

Taking more time for computing larger initial inner-approximation may
reduce significantly the cost of the improvement phase.
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Two phase approach for viability kernel computation State-of art first phase

First phase: state-of art approach (1)

The core idea is to find a function h : Rn Ñ R of the states satisfying

@x P K , Du P U , hpxq ‰ 0_ x∇xhpxq, f px , uqy ă 0, (1)

which is a Quantified Constraint Satisfaction Problem (QCSP).

Property

Let h be a function satisfying (1), define H :“ tx P K | hpxq ď 0u. Then
H Ă ViabSpK q, provided the boundary of K and H does not intersects.

The last part can be checked in the same manner:

@x P K , x R δK _ hpxq ą 0, (2)

where δK is the boundary of K .
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Two phase approach for viability kernel computation State-of art first phase

First phase: original approach (2)

Implemented as follows:

1 choose a particular control u P U ,

2 compute equilibrium points of Su, i.e. x˚ such that f px˚, uq “ 0,

3 linearize Su around x˚, obtain

pS̃uq
!

9̃x “ Ax̃ ,

with x̃ “ px ´ x˚q,

4 find quadratic Lyapunov function of S̃u. If found, x˚ is stable,

5 if not found try to find another control such that x˚ is stable and
compute the corresponding quadratic Lyapunov function,

6 noting by V pxq this Lyapunov function, find the largest r such that
hpxq :“ V pxq ´ r satisfy (1) (dichotomic search with interval tests).
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Two phase approach for viability kernel computation State-of art first phase

First phase: brief analysis

Original implementation

The proposed implementation is fast, but may fail to produce large
inner-approximations.

We propose to get back to the original statement. Given a family of
parametric template functions hp : Rn Ñ R, find p P P Ă Rq such that:

@x P K , Du P U , hppxq “ 0_ x∇xhpxq, f px , uqy ă 0 (3)

Additionally, find a p P P verifying (3) that maximizes the volume of
Hp :“ tx P K | hppxq ď 0u.
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Two phase approach for viability kernel computation Adapting barrier function algorithm

How to solve (3)

Barrier function

In [Djaballah et al., 2017], an interval method is proposed for computing
barrier functions, which requires to satisfy (3) (and extra other
constraints). Uncontrolled case.

Computable Sufficient Condition - Feasible Point Searcher (CSC-FPS)
algorithm.

FPS (branching algorithm on p): explore the set of parameters, each
iteration applying the CSC step. Stops once a feasible parameter p is
found;
CSC (branching algorithm on x): checks whether (a.) an initially
selected point in a given box rps satisfy the universally quantified
constraints, (b.) that for all p P rps there exists an x which
contradicts the constraints, (c.) not decidable.

Use of contractors [Chabert and Jaulin, 2009] to reduce further the boxes
rps and rxs.
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Two phase approach for viability kernel computation Adapting barrier function algorithm

CSC-FPS: discussion

Pros and Cons

A branching algorithm on the parameters nesting another branching
algorithm on the states.

Computationally expensive (low dimensions), but it is not necessary
to explore all parameters.

Numerically guaranteed and handles transcendental functions.

Limitations for our application

I. I. CSC cannot contradict (3), i.e. prove that a p satisfy:

Dx P K , hppxq “ 0^ x∇xhpxq, f px , uqy ě 0.

II. Does not consider the ”quality” of the returned parameter.
III. Uncontrolled case.
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Two phase approach for viability kernel computation Adapting barrier function algorithm

What we propose for I.

I. : Counter-examples

In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (3) (uncontrolled case) Ñ Use of parametric interval Newton
for finding counter-examples to (3).

Definition

A parametric interval newton operator with respect to a system of
equation hp., .q “ 0 (h : Rq`n Ñ Rn)a and a parameter box rps P IRq,
written Nrpsp.q : IRn Ñ IRn, is an operator satisfying:

@rxs P IRn,Nrpsprxsq Ă rxs ùñ @p P rps, Dx P rxs, hpp, xq “ 0

aWith fewer equations than n, select some states xi as parameters.
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In [Ishii et al., 2012], a Branch & Prune method for solving problems as
negation of (3) (uncontrolled case) Ñ Use of parametric interval Newton
for finding counter-examples to (3).
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Two phase approach for viability kernel computation Adapting barrier function algorithm

What we propose for II

II. : Optimizing via Branch & Bound

Embedding the FPS loop into a Branch & Bound optimization algorithm:

Each iteration selects a preferred box rps from the branching

If a feasible point p P rps is found, eliminates the boxes from the
branching whose elements are necessarily worse

Stops when a sufficiently good point p̂ is found

Difficulties

Definition of a ”best” parameter p (which objective function to use
for which template)

Efficient exploration strategy. Following [Neveu et al., 2016], we
chose two orderings of the parameter boxes: min LB and max UB.
Emphasis on likely feasible parameters ?
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Two phase approach for viability kernel computation Adapting barrier function algorithm

What we propose for III.

III. Relaxation by sampling feasible controls

Relaxation of (3): consider a finite set of control functions
tu1, u2, . . . , uku, then (3) can be relaxed to:

@x P K hppxq ‰ 0
k
ł

i“1

x∇xhppxq, f px , ui qy ă 0.

Choices for the ui : constant (interval) function, state feedback, . . .
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Numerical results

Numerical results

Two phase algorithm implemented in Ibex [Chabert and Jaulin, 2009]
using DynIbex 2 providing rigorous numerical integration tools using
Runge-Kutta methods [Alexandre dit Sandretto and Chapoutot, 2016] for
the improvement phase.

2http://perso.ensta-paristech.fr/~chapoutot/dynibex/
Benjamin Martin (LIX, École Polytechnique) Rigorous computation of viability kernel 26 August 2017 16 / 23
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Numerical results Academic problem: Convex state space

Car on the hill

Consider the system:

#

9x “ v

9v “ ´9.81 sin
´

1.1 sinp1.2xq´1.2 sinp1.1xq
2

¯

´ 0.7v ` u,
(4)

with K “ pr´1, 13s ˆ r´6, 6sqT and u P r´3, 3s.

Considering the equilibrium points px˚, 0q with control u “ 0, we use the
following 3-parametric template function:

hppx , vq :“ p1px ´ x˚q2 ` p2v
2 ` p3px ´ x˚qv ´ 1, (5)

and we impose its positive definiteness, i.e. hp is a quadratic convex
function (additional constraints on p). We minimize the norm of pp1, p2q.
First phase stopped after 10 seconds for each equilibrium points.
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Numerical results Academic problem: Convex state space

Initial inner-approximation

Original method
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Numerical results Academic problem: Convex state space

After 5 iterations of the improvement procedure

Original method
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Numerical results Academic problem: Convex state space

Final inner-approximation
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Numerical results Academic problem: Convex state space

Analysis

Original method: 27 iterations of improvement procedure, about 360
seconds (3 seconds for the first phase)
New method: 18 iterations of improvement procedure about 175 seconds
(34 seconds for the first phase)
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Numerical results Non-convex state space

Non-convex K

Initial inner-approximation
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Numerical results Non-convex state space

Non-convex K

Final inner-approximation: 22 iterations, 305 seconds (50s for the first
phase)
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Conclusion and perspectives

Conclusion

Another approach for finding an initial inner-approximation of the viability
kernel:

generalization of the method from [Monnet et al., 2015];

much higher cost, but trades favorably with the gain in the
improvement phase

Future work:

scalability ? different templates (e.g. semi-algebraic sets) ?

measuring likeliness of feasibility of rps: possibility of more efficient
exploration strategy and finding better solutions quicker;

a better method for finding counter-examples or feasible parameters
(see e.g. [Hlad́ık and Ratschan, 2014]);

(meta)heuristic based optimization loop.
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Thank you for your attention

Benjamin Martin (LIX, École Polytechnique) Rigorous computation of viability kernel 26 August 2017 1 / 7



References I

[Alexandre dit Sandretto and Chapoutot, 2016] Alexandre dit Sandretto,
J. and Chapoutot, A. (2016).
Validated explicit and implicit runge-kutta methods.
Reliable Computing, 22:79–103.

[Chabert and Jaulin, 2009] Chabert, G. and Jaulin, L. (2009).
Contractor programming.
Artificial Intelligence, 173(11):1079 – 1100.

[Djaballah et al., 2017] Djaballah, A., Chapoutot, A., Kieffer, M., and
Bouissou, O. (2017).
Construction of parametric barrier functions for dynamical systems using
interval analysis.
Automatica, 78:287 – 296.
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CSC-FPS (1)

FPS loop consists of a branching algorithm on an initial box rps:
Inputs: boxes rps, rxs
Main loop (while Q ‰ 0):

1 rps0 Ð poppQq;

2 Contract rps0 using some samples in rxs (proj-inter
contractor [Chabert and Jaulin, 2009]);

3 if empty go to 1. otherwise continue;

4 apply the CSC procedure on rps0;

5 if feasible parameter found, stop algorithm and returns it;

6 else if no feasible parameter exists go to 1.;

7 otherwise branch on rps0, go to 1.;

If never stopped by 5., limit precision is reached then it is not decidable,
otherwise no feasible parameter in rps.
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CSC-FPS (2)

CSC loop consists of a branching algorihtm on an initial box rxs:
Inputs: boxes rps, rxs, a point p̃ P rps
Main loop (while S ‰ 0)

1 rxs0 Ð poppSq;

2 Contract rxs0 with respect to p̃;

3 if constraint locally satisfied for p̃, go to 1.;

4 try to find a x P rxs0 not satisfying the constraints for all p P rps, if
one found returns ”no feasible parameter”;

5 otherwise branch on rxs0, go to 1.

If never stopped by 4., limit precision reached then it is not decidable,
otherwise p̃ satisfies the QCSP.
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