
Noname manuscript No.
(will be inserted by the editor)

A certified Branch & Bound approach for Reliability-Based
Optimization problems

Benjamin Martin · Marco Correia · Jorge

Cruz

the date of receipt and acceptance should be inserted later

Abstract Reliability-based Optimization problems are optimization problems con-
sidering a constraint that measures reliability of the modelled system: the proba-
bility of a safety event with respect to controllable decision variables and uncertain
random variables. Most solving approaches use approximate techniques for evalu-
ating this reliability constraint. As a consequence, the reliability of the computed
optimal decision is not guaranteed.

In this paper, we investigate an interval-based Branch & Bound for solving
globally reliability-based optimization problems with numerical guarantee. It com-
bines an interval Branch & Bound framework with a certified reliability anal-
ysis technique. This technique considers the reliability constraint and induced
safety region modelled within Probabilistic Continuous Constraint Programming
paradigm. The certified reliability analysis is numerically handled by an interval
quadrature algorithm. In addition, a new interval quadrature function for two
random variables, based on linear models of the safety region is described. Two
implementations of the Branch & Bound, which differ on how the certified relia-
bility analysis is handled throughout the optimization process, are presented. A
numerical study of these two variants shows the relevance of the interval linear
model-based quadrature function.

Keywords Reliability-based optimization, Branch & Bound, Interval analysis,
Probabilistic constraints

Benjamin Martin
NOVA-LINCS, Universidade Nova de Lisboa, Lisbon, Portugal;
LIX, École Polytechnique, Paris-Saclay, France
E-mail: bmartin@lix.polytechnique.fr,

Marco Correia
NOVA-LINCS, Universidade Nova de Lisboa, Lisbon, Portugal
E-mail: mvc@fct.unl.pt,

Jorge Cruz
NOVA-LINCS, Universidade Nova de Lisboa, Lisbon, Portugal
E-mail: jcrc@fct.unl.pt.

2 Benjamin Martin et al.

1 Introduction

Reliability-Based Optimization (RBO) is the problem of finding the best reliable
decision of a problem containing controllable decision variables and uncontrollable
uncertain variables. Reliability analysis is used to assess the probability of safety of
a decision considering the uncertainty. From the point of view of the optimization
problem, this give rise to a particular reliability constraint. The range of applica-
tions is wide, in particular in engineering design and structural optimization, see
e.g. [30,29,25]. Note that a RBO problem is equivalent to a chance constrained
problem in Stochastic Programming.

Knowing the probability distribution of the uncertain variables, evaluating the
reliability of a decision requires computing the probability of a safety event, viewed
as the probability mass of a safety region. A safety region is classically represented
as a conjunction of (non-linear) inequality constraints, of both the decision and
random variables, each of them modelling a safety condition of a critical element of
the system. The computation of the reliability requires the integration of the joint
probability distribution function of the random variables over the safety region,
which is a challenging numerical problem. In addition to the reliability analysis, the
decision must be optimized with respect to a given objective, typically a function
of the decision variables. Thus an RBO problem is two-fold: reliability assessment
and optimization.

This problem has been tackled with different techniques. Most of these ap-
proaches base their reliability analysis on approximate techniques. For example
Monte Carlo estimation, which is usually subsumed by more advanced techniques
when requiring high reliability such as First Order Reliability Method (FORM) or
Second Order Reliability Method (SORM), see e.g. [1,27] for a survey of recent RBO
methods. The use of approximate techniques is motivated by their relatively low
computational cost and ease of use. However, when problems are highly nonlinear,
they are subject to numerical errors, causing them to under or overestimate the
reliability of decisions [6]. This can be a great issue when assessing the reliability
is of critical importance.

In this paper, we investigate a global RBO approach based on interval analysis
and the recently proposed Probabilistic Continuous Constraint Programming (PCCP)
paradigm [5,6]. This approach performs global optimization with rigorous relia-
bility analysis, i.e asserting certainly the reliability of decisions. To the authors
knowledge, no similar approach exists in the literature. The reliability analysis
presented here can be considered as an interval version of the robust bounding ap-
proach [24] in robust optimization, whose idea is to bound the safety region with
easier to integrate sets. Note also that although the standard version of the relia-
bility analysis described here can be extended to more than two random variables,
the other version with linear models is currently only dedicated to two random
variables. The paper is constructed as follows. Section 2 describes the problem
and a brief overview of the literature is provided. Section 3 provides the neces-
sary background on interval analysis, and in particular on interval quadrature used
with PCCP. In Section 4, we show several results for performing reliability analysis
over box region of the decision space, which are embedded in the Branch & Bound
algorithm for solving RBO problems described in Section 5. Some experimental
results are analysed in Section 6 and the paper is concluded in Section 7.

Certified B&B for RBO 3

2 Reliability-Based Optimization

In this paper, we consider RBO problems of the form:min f(y)
s.t. P (g(x, y) ≤ 0) ≥ r

y
i
≤ yi ≤ yi, ∀i = 1, . . . ,m

 (1)

where f : Rm → R is the objective function depending on the decision variables y ∈
Rm; g(x, y) : Rn+m → Rq is a conjunction of q inequality constraints considering
the random variables x ∈ Rn that models the safety region, r ∈ [0, 1] is the required
reliability and y

i
, yi represents respectively lower and upper bounds on the decision

variable yi. In this paper, we consider f and g to be continuously differentiable.
We will denote by H(y) := {x ∈ Rn : g(x, y) ≤ 0} the safety region correspond-

ing to a decision y and yinit = {y ∈ Rm : y ≤ y ≤ y} the bound on the decision

variables1. We consider the vector of random variables x = (x1, . . . , xn) with joint
probability distribution function (PDF) Φ : Rn → R+ (which we will consider
continuously differentiable as well) defined on a probability space (Ω,B, P) where
H(y) ⊆ Ω,∀y ∈ yinit, B being a Borel σ-algebra and P the probability measure.
Therefore the reliability of a decision y is given by

P (x ∈ H(y)) :=

∫
x∈H(y)

Φ(x) dx. (2)

Evaluating (2) is numerically challenging as the set H(y) is defined by a set of
nonlinear inequalities defining the safety region. As simulations techniques such as
Monte Carlo are in general too computationally expensive, in particular when r

is high, most approaches in the RBO literature use the method FORM or SORM
to evaluate (2). These two methods are based on a transformation of the random
space into a standard centered normally distributed random space, and the compu-
tation of the Most Probable Failure Point and induced reliability index. This latter
part is typically done via solving an optimization sub-problem. Then a first or
second order approximation of the safety region in the new space is built and used
to evaluate the probability given the standard (multivariate) centered normally
distributed law. Other approximate methods that uses the reliability index are
the Dimension Reduction Method (DRM) [25], in which a Taylor series expansion
is used to better estimate the safety region.

Most RBO solving methods are based on one of these evaluations of reliability
but differ on how the reliability index is computed, or how a targeted reliability
index is attained. In order to perform optimization and reliability analysis, these
methods consider different transformations of the problem (1). Three main cate-
gories of methods can be distinguished [1,27]: two-level approaches, in which the
main optimization loop contains a sub-process performing the reliability analysis;
single-loop approaches, in which the reliability analysis is replaced by equivalent
complementarity constraints leading to a single optimization loop; and decoupled

approaches, in which the RBO problem is transformed into a sequence of simpler
deterministic problems in which the reliability analysis is performed throughout
the sequence. For instance, see [9,17,7] for an example of each approach. However,

1 Vector comparison must be understood component-wise.

4 Benjamin Martin et al.

as the reliability analysis of the optimal decision returned by these methods, in-
cluding via Monte Carlo estimation, is not done in a rigorous way, its reliability is
not strictly guaranteed, see e.g [6].

In [10], the convergence of a verified quadrature method, based on interval
analysis, is proposed. This method computes a verified enclosure of an integral as
given by (2). This method has been used in [5,6] within the probabilistic contin-
uous constraint paradigm for producing enclosures of the probability of an event
modelled as a constraint system, as H(y) [6]. However, this paradigm has not
been used in an optimization context for which, as can be seen in the literature,
the way the reliability analysis is performed impacts the design of the optimiza-
tion method. We introduce in the following section the probabilistic continuous
constraint paradigm and necessary background on interval analysis.

3 Preliminaries on Interval Analysis

Interval analysis (IA) is a branch of numerical analysis born in the 1960’s [21]. It
considers using interval of reals instead of reals, and gives a framework for han-
dling uncertainties and verified computations. It has been sucessfully applied in
numerical constraint satisfaction problems, and in particular in the recent devel-
opment on probabilistic constraints [5,6], verified quadrature [10] and in nonlinear
global optimization [13,16,23]. We refer to [22,14,16,15] for a broad overview of
IA.

3.1 Notations and definitions

An interval x is a closed connected subset of R and is defined by a lower and
an upper bound x, x ∈ R, i.e. x = [x, x] = {x ∈ R : x ≤ x ≤ x}. We denote
by IR the set of all bounded real intervals. A n-dimensional box x is a vector
of n intervals (xi)1≤i≤n, defined by a lower and an upper bound vector x and
x. The hull operation of any arbitrary subset U ⊂ Rn is �U = [u, u] such that
∀i ∈ {1, . . . , n}, ui = inf{ui : u ∈ U} and ui = sup{ui : u ∈ U}. Given an interval
x, mid(x) := 0.5(x + x) is its center, wid(x) := x − x is its width. The width of a
box is the maximum of its component-wise widths. The volume of a n-dimensional
box x is vol(x) :=

∏
1≤i≤n wid(xi). A convergent sequence of boxes (xk)k∈N is a

sequence satisfying limk→∞wid(xk) = 0 and ∃x ∈ xk, ∀k ∈ N.

An interval extension f : IRn → IR of a function f : Rn → R is an interval
function satisfying the containment principle, i.e. f(x) := {f(x) : x ∈ x} ⊆ f(x)
for any box x ∈ IRn. A similar component-wise definition holds for vector-valued
functions. An interval extension is convergent if for any sequence of boxes (xk)k∈N ⊆
U , limk→∞wid(xk) = 0 =⇒ limk→∞wid(f(xk)) = 0. The natural extension f of
f , which will be considered the default interval extension in the paper, consist of
replacing all arithmetic and unary operations in the function f by their interval
arithmetic counterparts. A Taylor model of f : Rn → R inside a box x ∈ IRn is a
pair 〈p,R〉 where p is a polynomial and R an interval such that f(x) ∈ p(x) +R

for all x ∈ x.

Certified B&B for RBO 5

Integration over a box domain can be performed with an interval extension:∫
x

f(x) dx ∈ f(x)vol(x). (3)

Considering a Taylor model extension, this can be simplified to∫
x

f(x) dx ∈ T f (x) =

∫
x

p(x) dx+

∫
x

R dx, (4)

where

∫
x

R dx = R vol(x). The Taylor model approach tend to be more accurate

for integration [10] as a closed form formula can be derived.

3.2 Probabilistic Constraints and Interval-based quadrature

A classical application of interval analysis is finding and characterizing solutions
of a Continuous Constraint Satisfaction Problem (CCSP). Considering a set of n
variables x = (x1, . . . , xn) whose values lie within an initial box domain xinit ∈
IRn, a CCSP is the problem of finding all assignments of variables values within
xinit satisfying a set of constraints, usually represented as nonlinear equalities
and inequalities. Here, we solely focus on CCSP whose solution set H is defined
with respect to q inequality constraints, i.e. H = {x : g(x) ≤ 0, x ∈ xinit} with
g : Rn → Rq.

A solution to a CCSP is usually built as a paving of H, i.e. a set of possibly
edge adjacent boxes H� covering H, obtained through a Branch & Prune (B&P)
algorithm. This method iteratively subdivides (branching step) the initial domain
xinit (considered as the initial paving of H) and eliminates/reduces (pruning step)
sub-boxes containing assignments not satisfying the constraints. This latter step
is typically done through constraint propagation and consistency techniques [2,3,
18]. A box x from the paving can be classified into different status. Considering
the interval [g, g] = g(x), x is: inner (within H) if g ≤ 0, outer (outside H) if
∃i = {1, . . . , q} s.t. g

i
> 0 (x is usually eliminated from the paving) and boundary

(possibly intersecting the boundary of H) otherwise. The aim of B&P is to cover
H accurately enough with a tight paving of H, in particular with a sharp global
enclosure of the boundary of H with boundary boxes.

In the Probabilistic Continuous Constraint Programming (PCCP) paradigm [5,6],
the variables of a CCSP are considered uncertain. Hence, the CCSP is associated
to a probability space, and in particular a probability measure of any events based
on a joint probability distribution function (PDF) of the random variables x. The
purpose of PCCP is then to evaluate with guarantee the probability of the event x ∈
H (such as in (2)). To do so, the method follows a B&P scheme with the objective of
obtaining an enclosure of the probability as sharp as required instead of obtaining
a sharp paving of H. In order to compute an enclosure of the probability of x ∈ H
given a paving H�, we will use the following interval quadrature function [5,6,10]

Igg,Φ(x) :=

TΦ(x) if x inner

�([0, 0] ∪Φ(x))vol(x) if x boundary

0 otherwise (outer)
, (5)

6 Benjamin Martin et al.

Algorithm 1: Branch & Prune for quadrature

Input: Constraints g; PDF Φ; initial box paving Hinit
� ⊆ xinit; Precision of the

quadrature ε
Output: Enclosure of P (H)

1.1 H� ←Hinit
� ;

1.2 while wid(P (H�)) > ε do
1.3 x← Extract(H�);
1.4 S ← Split(x);
1.5 foreach x′ ∈ S do
1.6 if x is not outer then H� ←H� ∪ {x′};
1.7 end

1.8 end
1.9 return P (H�)

where TΦ(x) is defined as in (4), i.e. considering Taylor models of Φ on box x.
Given a paving H� of H, the probability of the event x ∈ H satisfies [10]:

P (x ∈ H) ∈ P (H�) =
∑

x∈H�

Igg,Φ(x). (6)

In order to compute P (H�), we use Algorithm 1, the B&P algorithm for
quadrature as defined in [10] and whose convergence has been assessed. We note
that here we have considered events not related to a decision as in (2), although
these results are naturally extended for obtaining an enclosure of the probability
of x ∈ H(y), given any decision y.

4 Reliability analysis over a decision box

Considering a decision y, the corresponding safety region in the space of random
variables realisations is defined by H(y), which is used to define the probability of
safety (2). Inside the B&B algorithm that is described in the following section, it
will be necessary to be able to build an enclosure of the reliability of any decision
within a decision box y. Hence, if we can show that all decisions in y are not
reliable, the corresponding part of the decision space can be eliminated from the
search.

4.1 Interval quadrature with a decision box

An enclosure of the reliability of any decision within a box y can be defined as
follows. Note that all the results presented here are valid since the PDF function
Φ to integrate is positive.

Definition 1 (Integral enclosure of the reliability of decision boxes) Consider
a RBO problem with PDF Φ and a decision box y. The following two sets

H(y) :=
{
x ∈ xinit : ∀y ∈ y, g(x, y) ≤ 0

}
, (7)

H(y) :=
{
x ∈ xinit : ∃y ∈ y, g(x, y) ≤ 0

}
, (8)

Certified B&B for RBO 7

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x
2

H(y)

H(y)

(a) Sets H(y) and H(y) enclosing the
safety region with respect to any decision
within y.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x
2

Hg(y)

Hg
(y)

(b) Under and over approximation ofH(y)

and H(y) by inner and boundary random
values.

Fig. 1 2-decision and 2-random variables safety region defined by g1(x, y) = (x1 + y1)2 +
(x2 + y2)2 − (x1 + y1)(x2 + y2) − 0.5 ≤ 0 and g2(x, y) = (x1 + y1) + (x2 + y2) − 0.5 ≤ 0.
Considering the decision box y = ([−1/8, 1/8], [−1/8, 1/8]).

verifying H(y) ⊆ H(y) ⊂ H(y) (∀y ∈ y), satisfy∫
H(y)

Φ(x) dx ≤ P (x ∈ H(y)) ≤
∫
H(y)

Φ(x) dx, ∀y ∈ y. (9)

In other words, the probability of any decision within y for being safe is greater
than the probability of safety of all possible decisions, and lower than the proba-
bility of safety of at least one decision. An example of such two sets are depicted
on Figure 1(a).

With this definition, we can introduce interval quadrature functions over the
random variables that produce verified enclosure similar to (5). For a given random
box x, those interval functions must satisfy

Iyg,Φ(x) ⊇

[∫
H(y)∩x

Φ(x) dx,

∫
H(y)∩x

Φ(x) dx

]
. (10)

We can further note that when x ⊆ H(y) then Iyg,Φ(x) ⊇
∫
x
Φ(x) dx and when

x ⊆ H(y)\H(y), then Iyg,Φ(x) ⊇ [0,
∫
x
Φ(x) dx]. Also, when y is a degenerated box,

i.e. a single decision y, then H(y) = H(y) = H(y).
Similar to what has been introduced in Section 3.2, we can define an interval

function based on an interval extension g of the constraint functions g, that sat-
isfy (10). To do so, the notions of inner and boundary for a random box x can be
used, but here considering a decision box y and denoting [g, g] = g(x,y). E.g. x
is inner if g = sup g(x,y) ≤ 0. Consequently, the following interval function based
on g verifies (10)

Iy,gg,Φ(x) :=

TΦ(x) if x inner

�([0, 0] ∪Φ(x))vol(x) if x boundary

0 otherwise (outer)
, (11)

8 Benjamin Martin et al.

which is equivalent to (5), in particular it makes use of Taylor models.
From the properties of interval extension, inner boxes form a subset of H(y)

while boundary boxes form a superset of H(y)\H(y), the union of the two building
a superset of H(y). This is depicted on Figure 1(b).

Definition 2 The set of inner and boundary random values, given a decision box
y and interval extension g are respectively defined as

Hg(y) :=
{
x ∈ xinit : sup g(x,y) ≤ 0

}
, (12)

Hg
0(y) :=

{
x ∈ xinit : inf g(x,y) ≤ 0, ∃i = {1, . . . , q}, sup gi(x,y) > 0

}
, (13)

which satisfy Hg(y) ⊆ H(y) and H(y) ⊆ Hg
(x), with Hg

(y) := Hg(y) ∪Hg
0(y).

Therefore if we use the Algorithm 1 with the integral function (11), a paving
of Hg

(y) and an enclosure of[∫
Hg(y)

Φ(x) dx,

∫
Hg

(y)

Φ(x) dx

]
⊇

[∫
H(y)

Φ(x) dx,

∫
H(y)

Φ(x) dx

]
(14)

are maintained at each iteration. Of course as a consequence and contrary to [10],
the quadrature of Algorithm 1 cannot asymptotically converge to a degenerated
interval hence deprecating the stopping criteria. Instead, it can at best asymptot-

ically converge, under the hypotheses in [10], to
[∫
Hg(y)

Φ(x) dx,
∫
Hg

(y)
Φ(x) dx

]
which in general is overestimating the tighter enclosure provided by (9). Nev-
ertheless, with g being convergent, if we consider the degenerated decision box
y = [y, y], then Hg(y) = Hg

(y) = H(y) = H(y) = H(y).
In order to produce an enclosure similar to (14) with Algorithm 1, we then use

the quadrature function (11) and stopping criterion based on maximum number
K of iterations. From this algorithm, we can have a proof of its correctness and
convergence properties that will be necessary in the following section.

Proposition 1 The quadrature algorithm, Algorithm 1, with quadrature function (11)
is correct, i.e. given a decision box y, and assuming the initial paving contains H(y),

at each iteration

P (x ∈ H(y)) =

∫
H(y)

φ(x) dx ∈
∑

x∈H�

Iy,gg,Φ(x), ∀y ∈ y. (15)

Proof This is similar to the proof of [10, Theorem 1]. The initial paving is as-
sumed correct, and only outer boxes are removed from the paving throughout the
iterations, i.e. H(y) is always covered by the paving. This paving is also almost
disjoint, i.e. the volume of the intersection between two boxes of the paving is zero.
Therefore, due to (10), for all y ∈ y:

P (x ∈ H(y)) ∈
∑

x∈H�

[∫
H(y)∩x

Φ(x) dx,

∫
H(y)∩x

Φ(x) dx

]
⊆

∑
x∈H�

Iy,gg,Φ(x). (16)

ut

Certified B&B for RBO 9

Let P k(y) denotes the enclosure of probability maintained by the quadrature
algorithm at iteration k. Consequently P k(y) includes the probability of safety of
any decisions within y.

Eventually, from a sequence of convergent decision boxes, we have the following
corollary which depends on definitions and results exposed in Appendix A.

Corollary 1 Under the conditions of Theorem 3 (p. 22), Algorithm 1 is asymptotically

convergent, i.e for any convergent sequence of decision boxes (yk)k∈N within yinit:

lim
k→∞

wid(P µ(k)(y
k)) = 0, (17)

where µ : N→ N, limk→∞ µ(k) =∞.

Proof Here, we use a ”Worst First Search” (with respect to the width of the quadra-
ture function evaluation) selection strategy. The proof follows from Theorem 3, and
the proof of [10, Corollary 2] with the use of [10, Lemma 2]. ut

This Corollary will be useful for proving that the quadrature algorithm can be
effectively used to prune non-reliable parts of the decision space.

4.2 Interval quadrature with linear models

We describe another quadrature function that differs from (11) and that can give
a sharper enclosure for a boundary box. The current implementation considers at
most n = 2 random variables.

The general idea is to extract from a boundary random box x a portion that
belongs to H(y), to extract a portion that contains H(y)\H(y), and to evaluate
the integrals on both parts. Of course, due to the non-linearity of the constraint
functions g, an accurate general approach based on the expression of g cannot be
computationally reasonable to use. Hence, the idea is to produce inside a bound-

ary random box linear models which can be used to enclose certainly the part
H(y)\H(y) within x, given a decision box y (see Definition 1). Evaluating inte-
grals over domains defined by linear inequalities is numerically easier.

For a constraint function gi and random/decision box x and y, denote by
〈ai, bi〉 and 〈ai, bi〉, with ai, ai ∈ Rn and bi, bi ∈ R, the linear models of gi verifying

bi +
n∑
j=1

ai,jxj ≤ gi(x, y) ≤ bi +
n∑
j=1

ai,jxj , ∀x ∈ x, ∀y ∈ y. (18)

We will further define the set.

H〈a,b〉 :=

x ∈ xinit : b+
n∑
j=1

ajxj ≤ 0

 . (19)

with a ∈ Rn and b ∈ R.

10 Benjamin Martin et al.

T
〈a,b〉
Φ

x

(a) No decomposi-
tion.

T
〈a,b〉
Φ

TΦ

x

(b) Decomposition
with an inner box.

0

T
〈a,b〉
Φ

x

(c) Decomposition
with an outer box.

Fig. 2 Decomposing 2-dimensional boxes with respect to a linear inequality. The integral
quadrature function to apply for each sub-box is shown.

Then from the property (18), we can deduce the following relations:

x ∩
q⋂
i=1

H〈ai,bi〉 =

q⋂
i=1

x ∈ x : bi +
n∑
j=1

ai,jxj ≤ 0

 ⊆ H(y) ∩ x, (20)

x ∩
q⋂
i=1

H〈ai,bi〉 =

q⋂
i=1

{
x ∈ x : bi +

n∑
i=1

ai,jxj ≤ 0

}
⊇ H(y) ∩ x. (21)

Given x being boundary, with respect to a decision box y, suppose that

∀j = 1, . . . , q, i 6= j, sup gj(x,y) ≤ 0 ∧ 0 ∈ gi(x,y). (22)

In other words, the left hand size of equations (20) and (21) only involves the
linear models of gi. This means specifically for n = 2 that if

−(b+ a2x2)/a1 ∈ x1, ∀x2 ∈ x2, (23)

with 〈a, b〉 being either 〈ai, bi〉 or 〈ai, bi〉 (and up to a permutation of x1 and x2
and their coefficients), then an enclosure of the integral over the domain delimited
by the linear model is obtained by2

T
〈a,b〉
Φ (x1,x2) :=

∫ x2

x2

∫ −(b+a2x2)/a1

x1

p(x1, x2) +R dx1 dx2, (24)

where 〈p,R〉 is a Taylor model of Φ. In particular, a close-form formula of (24) can
be easily obtained. This case is illustrated on Figure 2(a).

When (23) is not satisfied, it is necessary, in order to compute an enclosure of
the integral in x within the region delimited by the linear model, to compute a
decomposition of the box x such that one sub-box satisfies (23). This is depicted
in Figure 2(b) and 2(c). The other cases that may happen are either the box x
is entirely out of the region induced the linear model, or entirely inner. For those
cases, the integral used is respectively 0 or TΦ.

Obtaining this decomposition requires to find the intersections, if existing, of
the boundary of the linear inequality with the boundary of the box and analysing

2 Assuming ai > 0. If ai < 0, the range of x1 is from −(b+ a2x2)/a1 to x1. If ai = 0, then
x1 and x2 and induced coefficients of the linear model can be swapped.

Certified B&B for RBO 11

the signs of the coefficients a. Here, we suppose that these intersections can be
computed exactly but of course in practice with the use of interval floating point
arithmetic, a (small) enclosure of those points is obtained. We discuss in the end of
the section how roundings have to be considered in order to maintain correctness
of the integral.

For a two-dimensional random space, a random box x can always be decom-
posed into three almost disjoint (possibly empty) boxes verifying:

xbound ∪ xin ∪ xout = x, (25)

∀x ∈ xin , b+ aT x ≤ 0, (26)

∀x ∈ xout , b+ aT x > 0, (27)

∃x, x′ ∈ xbound , b+ aT x ≤ 0 ∧ b+ aT x′ > 0. (28)

This decomposition, as illustrated on Figure 2, is used to define the following
interval quadrature function over random boxes verifying (22):

I
〈a,b〉
Φ (x) := T

〈a,b〉
Φ (xbound) + TΦ(xin) + 0(xout), (29)

with 0(.) := [0, 0].

We can then define the following interval quadrature function that can be used
inside the quadrature algorithm described in the previous section:

Ly,g
g,Φ(x) :=

TΦ(x) if x inner[
inf I

〈ai,bi〉
Φ (x), sup I

〈ai,bi〉
Φ (x)

]
if x boundary ∧ (22)

�([0, 0] ∪Φ(x)vol(x)) if x boundary ∧ not (22)
0 otherwise (outer)

. (30)

This function satisfies the correctness of the quadrature algorithm due to proper-
ties (20) and (21) of the linear models. It satisfies the convergence if its result is
intersected with the default function (11). Note that condition (22) implies consid-
ering the linear models of a single inequality constraint. An improvement of this
quadrature function can be expected by considering all the inequality constraints
whose boundary are potentially crossed within x, hence using one linear model per
constraint leading to a polytope region. This however would require to decompose
the box x with respect to the vertices of this polytope in order to obtain a closed
form formula of the integral. Another important remark is that this analysis is
limited to n = 2. We do not intend to go further since if n > 2, the general decom-
position x in order to obtain closed form formula for the integral with respect to
a linear function is more complex and would require a study on its own. Hence,
we prefer to leave these two subjects to a later work on the use of linear models
for general verified quadrature.

We describe now a way of obtaining the linear models satisfying (18). In [26],
zero-order Taylor extensions are used to obtain a verified linear relaxation of a
nonlinear optimization problem in order to compute lower and upper bounds. We
use here a first-order Taylor model 〈pi,Ri〉 of the constraint function gi over the
random/decision domain x and y that provides two parallel linear models 〈ai, bi〉

12 Benjamin Martin et al.

T
〈a,b〉
Φ

TΦ

x

(a) Underestimate of
the case from Fig-
ure 2(b).

T
〈a,b〉
Φ

TΦ

x

(b) Overestimate of
the case from Fig-
ure 2(b).

0

T
〈a,b〉
Φ

x

(c) Underestimate of
the case from Fig-
ure 2(c).

0

T
〈a,b〉
Φ

x

(d) Overestimate
of the case from
Figure 2(c).

Fig. 3 Under and overestimating the integral region for the quadrature based on linear models.
The thick black lines represent the interval of uncertainty on the intersection of the boundary
of the box and the boundary of the linear model region. The gray areas depict the region that
is integrated.

and 〈ai, bi〉. The Taylor model is constructed as follows:

pi(x) = gi(x̃, ỹ) +∇xgi(x̃, ỹ)T (x− x̃), (31)

Ri = ∇ygi(x̃, ỹ)T (y − ỹ) (32)

+ 1/2(x− x̃,y − ỹ)T∇2gi(x,y)(x− x̃,y − ỹ), (33)

where x̃ and ỹ are taken as the midpoint of respectively x and y, and ∇2gi is an
interval extension of the second-order derivatives of gi. Consequently, the linear
models are constructed as:

ai = ai = ∇xgi(x̃, ỹ), (34)

bi = Ri + gi(x̃, ỹ)−∇xgi(x̃, ỹ)T x̃, (35)

bi = Ri + gi(x̃, ỹ)−∇xgi(x̃, ỹ)T x̃, (36)

which, by definition of Taylor models, satisfy (18).

Rounding. In practice, all computations are done via floating point interval arith-
metic which uses outward rounding for each computation. For example, the com-
putation of ∇xgi(x̃, ỹ) for obtaining the coefficients of ai, ai is done via an interval
extension, providing a small interval with floating point bounds containing the
true value of ∇xgi(x̃, ỹ).

Such rounding is not critical for the correctness of a closed form formula (24):
it only increases the overestimations of the integral. The issue is when computing
the decomposition as the intersections of the linear model and the box boundaries
are uncertain. The idea to handle these uncertainties is then to underestimate
the integration region when evaluating the integral with respect to 〈ai, bi〉, and
overestimate it for 〈ai, bi〉. This is illustrated on Figure 3. For example, Figure 3(a)
and 3(b) depicts the decomposition of an under and overestimation of integration
region based on the case on Figure 2(b). This principle can easily be generalized
to any level of uncertainty, but is valid only because the function to integrate is
positive.

Certified B&B for RBO 13

5 Interval Branch & Bound for RBO

Interval-based Branch & Bound (B&B) methods have been widely studied in the
literature for solving nonlinear continuous optimization problems rigorously, see
e.g [13,16,23,28]. In order to be used efficiently, it however requires explicit knowl-
edge of the objective function and constraints: closed-form formulas and deriva-
tives. As has been discussed above, there is in general no explicit formulation in
terms of the decision variables of the reliability constraint of (1). Hence, solv-
ing RBO problems with B&B is challenging. In particular, the resulting interval
B&B would be strongly subjected to the cluster effect, a well known phenomenon
in which an expensive decomposition of the search space occurs around global
optimal solutions due to the difficulty of proving non-optimality or infeasibility,
considered here as non-reliability.

The generic interval B&B algorithm for solving general nonlinear optimization,
here formulated for RBO, is given in Algorithm 2. The set S can be viewed as the
set of leaves of a search tree whose search nodes contain a decision box y and
a corresponding local lower bound on the objective function f . The global lower
bound fL and global upper bound are both initialized at line 2.1. Then the root
is built with the decision box y and the lower bound fL. The branches of the tree
are built through the splitting step. Nodes from S whose decision box are proved
to be non-optimal or non-reliable are discarded through the pruning step. The set
Sout stores the nodes that have been closed and that will be returned at the end
of the algorithm (it is first empty).

The main B&B loop occurs at line 2.4. The algorithm alternates splitting and
pruning steps until the set S is empty (in which case there are no more search
nodes to proceed) or until the following criteria is met:

(fU − fL) ≤ δmax(|fU |, 1). (37)

It stops the algorithm once a sufficient relative precision δ on the objective function
is reached. This is a classical stopping criterion to avoid an extensive and unnec-
essary search. At line 2.5, a node (y, f) is extracted from S. For this, we consider
extracting first the node with the lowest lower bound f (best first search). Then,
the node is split into several sub-nodes at line 2.6 (effectively expanding the search
tree) which are stored in the temporary list S′. We consider here, as for the quadra-
ture algorithm presented in the previous section, a bisection of y with respect to
the component yi of largest width. Afterwards, for each sub-node (y′, f ′) in S′,
pruning techniques are applied in order to discard non-optimal and non-reliable
decisions from y′. This step is described in details hereafter in Section 5.2, from
the result of Section 4. Then, if the box y′ has not been entirely pruned, the
bounds fU and f ′ are updated consequently at line 2.10. This step is described in
details in Section 5.1 and 5.2. The node (y′, f ′) is then checked if it can be closed
at line 2.11, i.e. if it has to be stored in Sout and not be considered again by the
algorithm. A classical criterion that we use here is based on a precision εy on the
decisions, i.e. a node with decision box y is closed if wid(y) ≤ εy. Another criterion
we use is based on (37): if it is satisfied, then all nodes in S are considered closed
and stored in Sout (see line 2.20). Otherwise, the node is inserted into S. At the
end of each iteration, the global lower bound fL is updated to the minimal local
lower bound of all nodes in S ∪ Sout .

14 Benjamin Martin et al.

Algorithm 2: Interval Branch & Bound for RBO

Input: RBO problem P = (f, g, Φ, r) with objective function f ; constraint functions g;
PDF Φ; reliability level r; initial random and decision box xinit and yinit;
objective precision δ

Output: nodes Sout containing reliably optimal solutions; upper bound value fU
2.1 fL, fU ← InitializeBounds(yinit,xinit,P);

2.2 S ← {(yinit, fL)};
2.3 Sout ← ∅;
2.4 while S 6= ∅ or not (37) do
2.5 (y, f)← Extract(S);

2.6 S′ ← Split(y, f ,P);

2.7 foreach (y′, f ′) ∈ S′ do
2.8 y′ ← Prune(y′,xinit, f ′, fU ,P);

2.9 if y′ 6= ∅ then
2.10 fU , f

′ ← UpdateBounds(y′,xinit,P);

2.11 if IsClosed(y′, f ′, fU) then
2.12 Sout ← Sout ∪ {(y′, f ′)};
2.13 else
2.14 S ← S ∪ {(y′, f ′)};
2.15 end

2.16 end

2.17 end
2.18 fL ← min(y,f)∈S∪Sout

f ;

2.19 end
2.20 if (37) then Sout ← Sout ∪ S;
2.21 return Sout ,fU

5.1 Convergence results of B&B for RBO

In this section, we discuss the correctness and convergence of Algorithm 2 for solv-
ing RBO problems. For this purpose, we describe a basic B&B algorithm upon
which more practical implementations are built and presented in Section 5.2. We
use the quadrature algorithm from Algorithm 1 as detailed in Section 4 for perform-
ing reliability analysis over decision boxes. We recall that it uses either quadrature
function (11) or (30) and a stopping criterion based on maximum number K of
iterations.

We will note Sk the set S from Algorithm 2 at the kth iteration. In this section,
the procedures Extract, Prune and UpdateBounds are implemented as follows.

Extract : Extract first the node whose lower bound f is the lowest.
Prune : Discard the node if fU < f . Apply the quadrature Algorithm 1

implemented as previously described with respect to the current decision box
y. Discard the node if supP (y) < r.

UpdateBounds : Given f an interval extension of f , f = inf f(y). Noting ỹ =
mid(y), then fU = f(ỹ) if f(ỹ) < fU and ỹ is proved reliable by the quadrature
algorithm.

For the method Split, we will need a fair splitting strategy (as in [10]). Consider
a decision box yk from a node from Sk at the kth iteration of the B&B algorithm.
Denote by height(yk) the number of times the induced node has been split during
the algorithm (its height in the search tree). Then we say that the splitting is fair

Certified B&B for RBO 15

if:
lim
k→∞

height(yk) =∞ =⇒ lim
k→∞

wid(yk) = 0 (38)

For example, the strategy of bisecting the component yi of largest width is fair.
The first theoretical result is the correctness of Algorithm 2.

Theorem 1 (Correctness) The B&B Algorithm 2 is correct, i.e. each globally opti-

mal reliable solution of the RBO problem belongs to a decision box of a node in Sk at

each iteration k.

Proof Since the pruning step does not discard nodes whose decision box contains
globally optimal solutions and reliable solutions (due to the correctness of the
quadrature), then there is always nodes in Sk for all k containing each globally
optimal reliable decision. ut

We ensure this way that globally optimal reliable decisions are never discarded
from the search, validating the global scope of Algorithm 2.

Now we prove the asymptotic convergence of the B&B algorithm for RBO
problems: when considering δ = 0 and εy = 0, we show that any sequence of nodes
that is infinitely expanded by selection and splitting converges to a reliable optimal
solution. To do so, we first prove the corresponding sequence of decision boxes
cannot contain non-reliable decisions as they are eventually pruned by Pruning.

Proposition 2 Let (yk)k∈N be a sequence of decision boxes such that lim
k→∞

height(yk) =

∞ verifying (38), and yk ⊆ yinit. Define by K = `k = height(yk) the number of iter-

ations of the quadrature algorithm. Under the conditions of Corollary 1, if there exists

a decision ŷ ∈ yk, ∀k ∈ N with P (x ∈ H(ŷ)) < r, then there exists a k such that the

enclosure P (yk) produced by the quadrature algorithm verifies supP (yk) < r.

Proof For a given yk, the result of the quadrature algorithm is P `k(yk) where

`k = height(yk) is globally increasing with k by assumption. Moreover, (yk)k∈N is
convergent due to (38) and ŷ ∈ yk, ∀k ∈ N. We can then apply Corollary 1, which
states that limk→∞wid(P `k(yk)) = 0.

From Proposition 1, P (x ∈ H(ŷ)) ∈ P `k(yk), since ŷ ∈ yk for all k. As a

consequence, supP `k(yk)− P (x ∈ H(ŷ)) ≤ wid(P `k(yk)). As it converges to zero,

for each ε > 0, there is a k such that wid(P `k(yk)) < ε. Taking ε = r−P (x ∈ H(ŷ))

entails that supP `k(yk) < r, completing the proof. ut

This proposition ensures we are able to decide, with sufficient decomposition of
decision domains and sufficient number of quadrature iterations, the non-reliable
parts of the decision space. The next theorem validates the asymptotic convergence
of Algorithm 2.

Theorem 2 (Asymptotic convergence) Define by K = `k = height(yk) the max-

imal number of iterations of the quadrature algorithm. Given that the RBO problem

to solve is bounded and contains an optimal reliable solution, that the splitting method

is fair, and that f is convergent in yinit, then under the conditions of Corollary 1,

the B&B algorithm in Algorithm 2 verifies that for any infinite sequence of nodes

((yk, fk))k∈N ∈ Sk with yk+1 ⊆ yk and limk→∞ height(yk) = ∞ (corresponding

to an infinitely expanded branch of the search tree), there exists a ŷ ∈ yk for all k ∈ N
such that ŷ is a globally reliable optimal solution and limk→∞wid(yk) = 0.

16 Benjamin Martin et al.

Proof Recall that we have δ = 0 and εy = 0, and that the problem is bounded,
contains at least one reliable solution and Algorithm 2 is correct (see Theorem 1).
Assuming that the algorithm does not finitely terminates3, the search tree is in-
finitely expanded through selection and splitting entailing the existence of an in-
finite sequence of nodes with decreasing decision boxes (in the sense of inclusion)
with infinitely increasing height. Let ((yk, fk))k∈N ∈ Sk be such a sequence. Since

the splitting is fair, then from (38), we have that limk→∞wid(yk) = 0. We also
have a decision ŷ ∈ yk, for all k ∈ N.

By applying Proposition 2, we can show that ŷ is reliable (otherwise, the
corresponding node is eventually discarded after a finite number of iterations).
Suppose that ŷ is not globally optimal. Then there is a globally reliable opti-
mal decision y∗ such that f(y∗) < f(ŷ). Since the B&B is correct, we denote
by (y∗k, f∗k) ∈ Sk a sequence of nodes such that y∗ ∈ y∗k for all k ∈ N with

inf f(y∗k) ≤ f∗k ≤ f(y∗). Because f is convergent inside yinit, there is an it-

eration k at which f∗k ≤ f(y∗) < inf f(yk) ≤ fk ≤ f(ŷ) for all k ≥ k. There-

fore, starting at iteration k, the node (yk, fk) is not extracted from Sk and

split as the node (y∗k, f∗k) is preferred by the extraction strategy, contradict-

ing limk→∞ height(yk) =∞. Thus, ŷ is a globally optimal reliable solution to the
RBO problem. ut

Note that if the feasible space is empty, i.e. there is no reliable solutions, then the
B&B will eliminate all the search nodes due to Proposition 2.

5.2 Implementation

We investigate here two different alternatives for implementing Algorithm 2 which
differ on how the rigorous reliability analysis is conducted during the search. In
particular, one considers to share and propagate the paving obtained at the end
of the quadrature algorithm described in Section 4 applied to a given search node
to its child nodes. These implementations use the same extraction procedure and
update of lower bounds as in Section 5.1. Pruning a decision box y and updating
the upper bound fU are done within the same procedure. This is justified by the
fact that the update of the upper bound fU requires to find a reliable decision
within y. Knowing that such a decision exists within y makes it unnecessary to
prove the non-reliability of y. This is used by one of the alternative algorithm
to save computations. This PruningAndUpdateUB procedure will be used in place
of the procedure Prune in Algorithm 2. It follows the framework presented in
Algorithm 3.

It has two parameters KUB and Kbox that are used as an an upper bound on
the numbers of iterations of the quadrature Algorithm 1 as described in Section 4,
respectively for asserting the reliability of decision points used for updating the
upper bound, and evaluate the reliability of decision box. It also takes a boolean
sharing that determines the variant of the procedure. It takes as input a search
node, the upper bound fU and the considered RBO problem. Between lines 3.1

3 Otherwise, all decision boxes in Sout are degenerated, reliable and one of them is a global
optimum or the global upper bound and global lower bound are equal meaning a globally
optimal solution has been found.

Certified B&B for RBO 17

Algorithm 3: PruningAndUpdateUB

Parameters: Integer KUB and Kbox maximum number of quadrature iterations;
reliability r; boolean sharing

Input: node (y, f); upper bound fU set; RBO problem P with reliability level r
Output: narrowed box y

3.1 if fU < f then return ∅;
3.2 y ← ConstraintPropagation(y, f(y) ≤ fU);
3.3 if y = ∅ then return ∅;
3.4 ỹ ← mid(y) ;
3.5 boundUpdated ← false;
3.6 if f(ỹ) ≤ fU and inf Quadrature(ỹ, g, Φ,GetRandomPaving(parent(y))) ≥ r then
3.7 fU ← f(ỹ);
3.8 boundUpdated ← true;

3.9 end
3.10 if (sharing or not boundUpdated)
3.11 and sup Quadrature(y, g, Φ,GetRandomPaving(parent(y))) < r then
3.12 return ∅
3.13 else
3.14 return y
3.15 end

and 3.3, the node is pruned with respect to its bound and the objective function. In
particular, the procedure ConstraintPropagation applies a constraint propagation
algorithm on the decision domain y with respect to the constraint f(y) ≤ fU . This
is a common approach in interval B&B in order to discard from y decisions that
imply objective values worse than fU . We use here a propagation method based
on the filtering algorithm by hull-consistency HC4 [2]. The procedure returns a
narrowed, possibly empty, box.

The update of the upper bound occurs between lines 3.4 and 3.9. The midpoint
ỹ of y is computed and it is checked whether it is reliable using the Quadrature

procedure, referring to the quadrature algorithm. As initial paving, it uses the
one returned by GetRandomPaving(parent(y)). This procedure depends on sharing

and is explained below. Here, parent(y) designates the node for which y is the
immediate child from the Split procedure in Algorithm 2. If ỹ has a better objective
value than fU and is proved to be reliable, the boolean boundUpdated is set to true.

The reliability analysis of the box y is done between lines 3.10 and 3.15. This is
where the two variants of the algorithm appear, depending on the boolean sharing.

1- sharing = false: In that case, GetRandomPaving(parent(y)) = {xinit} and the
Quadrature is solely used to test whether decision points or boxes are or are
not reliable. This requires KUB and Kbox to be sufficiently high. When the
midpoint of y is proved to be reliable, it is then not necessary to check the
non-reliability of the decision box, saving computations.

2- sharing = true: In that case, pavings obtained at the end of the quadrature
algorithm for each search node of the B&B are shared to its children4 (for
the initial node, the paving is {xinit}). Hence, GetRandomPaving(parent(y))
returns the paving H� obtained after the quadrature algorithm applied to the
parent node of y. Then, the aim of Quadrature is to improve the enclosure of
the reliability, enabling the use of a smaller Kbox number of iterations. The

4 Taking y′ ⊆ y, then each inner or outer random boxes with respect to g and y are also
inner or outer for y′. Only boundary boxes for y can have a different status for y′.

18 Benjamin Martin et al.

aim of Quadrature for decision midpoints is the same as before (hence requiring
enough KUB iterations), but the shared paving can be used as an initialization.

Intuitively, the non-shared version of the Algorithm 3 leads to a two-level B&B
as the reliability analysis is independent to the optimization process. On the other
hand, the shared version can be viewed as a decoupled approach as the reliabil-
ity analysis is improved throughout the optimization process. Note also that the
shared version of the pruning implies a theoretically convergent B&B contrary
to the non-shared one5. Note finally that in any case, Quadrature algorithm stops
itself once reliability is proved or disproved, avoiding unnecessary iterations.

Summarizing the different procedures of Algorithm 2, we implement:

Extract : Defined as in Section 5.1.
Prune : Implemented as Algorithm 3, in either the shared or non-shared

version.
UpdateBounds : Defined as in Section 5.1, except that fU is updated with respect

to Algorithm 3.

All the other components are implemented as described in the beginning of this
section.

6 Experiments

We implemented the B&B algorithm for RBO problems in C++ using Gaol [11] as
interval arithmetic library and Realpaver [12] for constraint propagation routines.
All the experiments in the following have been run on a computer under Ubuntu
14.10 64-bit, with processor Intel i7-4702MQ 2.20GHz and 8Gb of RAM. We have
implemented the non-shared and shared version of the B&B algorithm as presented
in Section 5.2, using the reliability analysis based on the default quadrature func-
tion (11) or the linear model-based one (30).

For the experimental results presented here, the parameters are fixed as fol-
lows. For the stopping criterion, δ = 10−2 and for the closure criterion εy =
10−4. As a safeguard for avoiding very slow convergence, we also stopped the
algorithm when |Sout | ≥ 1000, or when reaching a timeout of 3600s. We set
KUB = 10000, which is overall sufficient for asserting the reliability of a sin-
gle decision on the problems we have considered. We have tested the algorithm
with different settings for Kbox , depending on which version of B&B is used:
Kbox ∈ {500, 1000, 2000, 5000, 10000, 20000} for the non-shared version and Kbox ∈
{20, 50, 100, 200, 500} for the shared version.

We have considered the 5 RBO problems as described in Appendix B (here
referred to RBO1-5), all of them containing 2 decision variables and 2 random
variables. For each of them, we have taken the two reliability values 0.9 and 0.99
for r. For the sake of clarity, we do not show here all the detailed results. These are
described inside the supplementary materials6. We show here results comparing
the best combination of non-shared and shared version of B&B with or without
linear model-based quadrature. The best is determined as the quickest method

5 As the total number of iterations performed by the quadrature algorithm is proportional
to the height of decision boxes due to the sharing.

6 http://ben-martin.fr/files/publications/materials/RBO/detailedRBOExperiments.pdf

Certified B&B for RBO 19

Table 1 Problem RBO1: performance results

Method t wid(fr) |ST | max |ST | |H�| max |H�|
r = 0.9

Bn (500, True) 4.98 0.0089 17 17 0 501
Bs (20, True) 1.51 0.0089 18 18 4 327 4 327
Bn (2 000, False) 10.40 0.0089 27 30 0 2 001
Bs (200, False) 5.06 0.0089 31 44 70 459 104 323

r = 0.99
Bn (500, True) 4.84 0.0063 9 17 0 501
Bs (20, True) 2.12 0.0063 13 23 3 106 5 381
Bn (2 000, False) 9.85 0.0063 17 34 0 2 001
Bs (100, False) 5.26 0.0063 30 74 34 379 95 025

terminating on the standard stopping criterion, or the most accurate method if all
settings are stopped due to one of the safeguard criterion. Methods in the following
are represented as < version(Kbox ,LM) >, where LM is a boolean indicating
the use of linear model-based quadrature, and version being either Bn or Bs for
respectively the non-shared and shared version of the algorithm. We have reported:
CPU time t (in seconds); final relative precision wid(fr) = (fU −fL)/max(|fU |, 1);
number of search nodes |ST | = |S|+ |Sout | at the end of the algorithm, maximum
max |ST | of nodes stored during the algorithm; total number of shared random
boxes |H�| at the end of algorithm and maximum number of total random boxes
max |H�| stored at anytime (these latter two measures only consider random boxes
produced and shared when evaluating the reliability of decision boxes).

All the results are reported in Tables 1-5. Clearly, the use of linear model-
based quadrature can improve significantly the convergence speed of the B&B.
In particular, it allows having a smaller Kbox and still ensuring convergence to
the required precision. For example, the best setting Kbox using linear model-
based quadrature is the smallest among the considered alternatives, which always
terminate to the prescribed precision. On the contrary, the default quadrature
function requires using larger Kbox in order to be able to detect and discard
non-reliable decision boxes. As can be seen for the problems RBO4 and RBO5
on Tables 4 and 5, it is necessary to use linear model-based quadrature in order
to reach the prescribed precision on the objective (except for Bn on RBO5 with
Kbox = 20000). We can still observe that the use of larger Kbox tends to give
better accuracy, as it is then possible to discard more non-reliable decision boxes
during the search.

Additionally, the sharing variant generally leads to a setting that converges
faster than all the non-shared settings. It requires however much more memory
when taking into account the storing of the shared random boxes. As the problems
we considered here have only two decision and two random variables, we can expect
this extra memory consumption to grow, potentially significantly, when dealing
with larger number of decisions and random variables.

7 Conclusion

An interval B&B algorithm for solving globally RBO problems with numerical
guarantees is presented in this paper. It uses a reliability analysis technique based

20 Benjamin Martin et al.

Table 2 Problem RBO2: performance results

Method t wid(fr) |ST | max |ST | |H�| max |H�|
r = 0.9

Bn (500, True) 5.38 0.0076 25 25 0 501
Bs (20, True) 1.59 0.0076 30 30 8 129 8 129
Bn (2 000, False) 6.95 0.0076 37 37 0 2 001
Bs (100, False) 3.39 0.0076 48 48 66 153 75 822

r = 0.99
Bn (500, True) 6.23 0.0070 7 21 0 501
Bs (20, True) 2.45 0.0070 9 31 2 007 9 904
Bn (5 000, False) 12.08 0.0070 7 21 0 5 001
Bs (500, False) 5.94 0.0070 8 30 45 206 256 892

Table 3 Problem RBO3: performance results

Method t wid(fr) |ST | max |ST | |H�| max |H�|
r = 0.9

Bn (500, True) 13.06 0.0099 43 43 0 494
Bs (20, True) 5.11 0.0099 54 55 16 727 17 042
Bn (5 000, False) 21.16 0.0099 50 51 0 4 953
Bs (500, False) 9.14 0.0099 64 64 465 261 465 261

r = 0.99
Bn (2 000, True) 29.94 0.0100 36 36 0 1 996
Bs (100, True) 10.51 0.0100 36 37 44 363 46 147
Bn (10 000, False) 60.76 0.0100 91 92 0 9 977
Bs (500, False) 25.63 0.0099 133 133 873 046 875 067

Table 4 Problem RBO4: performance results

Method t wid(fr) |ST | max |ST | |H�| max |H�|
r = 0.9

Bn (500, True) 9.66 0.0088 6 30 0 501
Bs (50, True) 8.02 0.0088 7 31 2 839 13 666
Bn (20 000, False) 3600.58 0.0365 242 293 0 20 001
Bs (500, False) 3600.03 0.0431 729 747 8 721 110 8 778 244

r = 0.99
Bn (500, True) 9.18 0.0067 8 30 0 501
Bs (20, True) 6.61 0.0067 10 39 2 490 6 588
Bn (20 000, False) 3600.80 0.0276 228 259 0 20 001
Bs (500, False) 3600.06 0.0370 303 522 3 523 295 6 249 435

Table 5 Problem RBO5: performance results

Method t wid(fr) |ST | max |ST | |H�| max |H�|
r = 0.9

Bn (500, True) 7.91 0.0092 12 15 0 501
Bs (20, True) 3.48 0.0092 16 16 5 317 5 436
Bn (20 000, False) 1422.51 0.0092 235 235 0 20 001
Bs (500, False) 2744.28 0.0202 1 837 1 840 23 810 402 23 839 337

r = 0.99
Bn (500, True) 10.03 0.0072 20 22 0 501
Bs (20, True) 5.21 0.0096 23 29 5 803 8 029
Bn (20 000, False) 3600.49 0.0108 436 489 0 20 001
Bs (500, False) 3600.09 0.0217 724 762 9 216 821 9 867 993

Certified B&B for RBO 21

on the Probabilistic Continuous Constraint Programming paradigm [6,5], which
is numerically based on the quadrature algorithm presented in [10]. Several results
for performing reliability analysis over decision boxes are described, in particular
a technique which uses linear models of the safety region. A numerical study
of two variants of this B&B algorithm is presented, showing that linear model-
based quadrature improves significantly the performances of the algorithm. The
two variants, namely sharing or not reliability analysis results over the iterations,
show different but interesting approaches: sharing leading to faster convergence
but at an increased memory cost.

The algorithm can be improved in several directions, in particular for dealing
with higher dimensional problems. First of all, new, maybe more dedicated to the
PDF, quadrature inclusion functions shall be investigated in order to reduce the
overestimations. This would avoid many splitting in the random variable space
and the consequent heavy computational cost. An immediate idea is to adapt the
quadrature with linear models to more than two random variables. The use of
these models for general quadrature shall also be investigated. A complementary
idea would be to adapt heuristically the number of iterations of the quadrature
algorithm. For example, an improvement factor, as used for detecting slow con-
vergence of filtering techniques in numerical constraint programming, could be
adapted. Another sharing variant of B&B could be implemented so as to give a
better trade-off of convergence speed and memory consumption, especially if one
wants to consider higher dimensional problems. For example, we could only share
boundary random boxes and use a global cache (for all the search nodes) for stor-
ing the integral of all the inner random boxes. The use of approximate reliability
analysis can be interesting to guide the search and delay the call to the verified,
but expensive, reliability analysis. For example, decision boxes that are approxi-
mately determined as non-reliable could be dropped from the search and brought
back only if the obtained optimal result is unsatisfactory. Eventually, it would be
interesting to be able to derive some guaranteed information on the derivative of
the reliability constraint in terms of the decision variables. This would help to de-
tect easier non-reliable decision boxes, for example by providing fast but verified
estimation of the reliability via some centered form extension.

Acknowledgements The authors are thankful to the Portuguese Foundation for Science and
Technology for having granted this work through the project PROCURE (Probabilistic Con-
straints for Uncertainty Reasoning in Science and Engineering Applications), ref. PTDC/EEI-
CTP/1403/2012. The authors are also thankful to the anonymous referees for their useful
remarks improving the quality of the paper.

A Proof of convergence of the quadrature algorithm

We state here the theorem of convergence of the quadrature algorithm over a decision box
domain. This theorem is used to prove Corollary 1. To do so, we will use the results from [10],
and we need to introduce some necessary notations.

Let Hk�(y) be the set of boxes x maintained by Algorithm 1 at iteration k for the quadra-

ture with respect to a decision box y. Denote H′k
� (y) the set {x ∈ Hk�(y) : wid(Iy,gg,Φ(x)) >

0}. The set Hk�(y) is decomposed into boundary boxes Bk(y) and inner boxes Lk(y), and

B′k(y),L′k(y) denotes respectively Bk(y) ∩H′k
� (y), Lk(y) ∩H′k

� (y).

22 Benjamin Martin et al.

Additionally, we denote by ε′k the value

ε′k(y) := max
x∈H′k

�
(y)

wid(x).

Recall that Φ is positive, continuously differentiable everywhere and bounded on xinit.
This entails that the natural interval extension Φ is convergent, and that Φ(x) is bounded.

Using notations from [10], the excess of a quadrature inclusion function Iyg,Φ(x) is defined

by

exc(Iyg,Φ(x)) :=
wid(Iyg,Φ(x))

vol(x)
. (39)

A quadrature inclusion function Iyg,Φ is weakly convergent inside xinit if for any x ⊆ xinit,there

exists a c > 0 such that exc(Iyg,Φ(x)) ≤ c. It is convergent if for any sequence (xk)k∈N with

xk ⊆ xinit, it satisfies

lim
k→∞

wid(xk) = 0 =⇒ lim
k→∞

exc(Iyg,Φ(x)) = 0.

Denote
rε := sup{exc(Iyg,Φ(x)) : x ⊆ xinit,wid(x) ≤ ε},

then if Iyg,Φ is convergent, then limε→0 rε = 0

A g-convergent quadrature inclusion function satisfies that the quadrature inclusion used
for boundary boxes is at least weakly convergent, and the one for inner boxes is at least
convergent (the case of (11) as shown in [10]).

Theorem 3 (Convergence) Let (yk)k∈N be an infinite convergent sequence of boxes in-
cluded in yinit with the decision ŷ ∈ yk for all k ∈ N. Given that g is continuous, that g is con-
vergent, and that H0(y) := {x ∈ xinit : g(x, y) ≤ 0, ∃i gi(x, y) = 0} satisfies vol(H0(ŷ)) = 0,
then Algorithm 1 with a g-convergent quadrature function like (11) satisfies:

lim
k→∞

ε′µ(k)(y
k) = 0 =⇒ lim

k→∞
wid(P µ(k)(y

k)) = 0, (40)

with µ : N→ N, limk→∞ µ(k) =∞.

Proof Recall that,

P µ(k)(y
k) :=

∑
x∈Hµ(k)

�
(yk)

Iy
k,g
g,Φ (x) (41)

=
∑

x∈Bµ(k)(yk)

�([0, 0] ∪Φ(x))vol(x) +
∑

x∈Lµ(k)(yk)

TΦ(x). (42)

Therefore,

wid(P µ(k)(y)) =
∑

x∈Bµ(k)(yk)

wid(�([0, 0] ∪Φ(x))vol(x)) +
∑

x∈Lk′ (yk)

wid(TΦ(x)) (43)

=
∑

x∈B′
µ(k)

(yk)

wid(�([0, 0] ∪Φ(x)))vol(x) +
∑

x∈L′
µ(k)

(yk)

wid(TΦ(x)). (44)

The second summation satisfies∑
x∈L′

µ(k)
(yk)

wid(TΦ(x)) ≤ rε′
µ(k)

(yk)

∑
x∈L′

µ(k)
(yk)

vol(x) ≤ rε′
µ(k)

(yk)vol(xinit), (45)

noting that wid(TΦ(x)) = exc(TΦ(x))vol(x), and that the excess is lower than the maximum
excess rε′

µ(k)
(yk). Since εµ(k)(y

k) converges to zero as µ(k) (i.e. k) tends to infinity, then

Certified B&B for RBO 23

Table 6 RBO benchmark problems characteristics

q yinit1 yinit2 xinit
1 xinit

2 x1 ∼ x2 ∼
RBO1 3 [1, 10] [1, 10] [−1, 1] [−1, 1] N (0, 0.2) N (0, 0.2)
RBO2 3 [−400, 300] [−100, 100] [−50, 50] [−50, 50] N (0, 10) N (0, 10)
RBO3 1 [0, 15] [0, 15] [−10, 20] [−6, 12] N (5, 1.5) N (3, 0.9)
RBO4 2 [1, 5.5] [1, 5.5] [−3, 3] [−3, 3] N (0, 0.2) N (0, 0.2)
RBO5 1 [−2, 2] [−2, 2] [−3, 3] [−3, 3] N (0, 0.05) N (0, 0.05)

rεµ(k) (yk) converges to zero due to the convergence of the quadrature inclusion TΦ. The limit

of the sum is hence zero.
We are left with checking the limit of the first summation. Since the quadrature inclusion

�([0, 0] ∪ Φ(x))vol(x) for any x ⊆ xinit is weakly convergent, there exists a c > 0 such that
exc(�([0, 0] ∪Φ(x))vol(x)) ≤ c. This entails that,∑

x∈B′
µ(k)

(yk)

wid(�([0, 0] ∪Φ(x)))vol(x) ≤ c
∑

x∈B′
µ(k)

(yk)

vol(x) = c vol(∪B′µ(k)(yk)), (46)

where ∪B′
µ(k)

(yk) designates the union of boxes in B′
µ(k)

(yk). We study the limit of its volume.

First, we denote B′ = limk→∞ ∪B′µ(k)(yk). It is defined as the set of points x such that

there exist an infinite sequence of boxes (xk)k∈N with xk ∈ B′
µ(k)

(yk) and x ∈ xk for all k.

We need to show that the volume of B′ is zero in order to complete the proof. To do so, we
show by contradiction that B′ ⊆ H0(ŷ). Suppose not, then for a x ∈ B′, x 6∈ H0(ŷ), we have
by definition of H0(ŷ) either: (i) ∃i, gi(x, ŷ) > 0; (ii) g(x, ŷ) < 0, (iii) g(x, ŷ) > 0.

Let (xk)k∈N be an infinite sequence of boxes, with x ∈ xk and xk ∈ B′
µ(k)

(yk), for all k.

By definition of boundary boxes, this imposes inf g(xk,yk) ≤ 0 and ∃i, sup gi(x
k,yk) > 0.

Because ε′
µ(k)

(yk) converges to zero, so is the width of xk. The widths of the boxes yk are

also convergent to zero. Eventually, since (x, ŷ) ∈ (xk,yk), ẑ = g(x, ŷ) ∈ g(xk,yk). Therefore,
for any value z ∈ g(xk,yk):

|z − ẑ| ≤ wid(g(xk,yk))

The right hand side converges to zero due to the convergence of g. As a consequence all values
within g(xk,yk) converge to ẑ = g(x, ẑ). Hence, we can prove that if (i) ∃i, gi(x, ŷ) > 0, then

there exists a k such that inf gi(x
k,yk) > 0, contradicting xk ∈ B′

µ(k)
(yk), ∀k ∈ N. A similar

contradiction holds for cases (ii) and (iii). Therefore, x ∈ H0(ŷ) which proves B′ ⊆ H0(ŷ) and
by hypothesis that vol(B′) ≤ vol(H0(ŷ)) = 0. This completes the proof. ut

B Benchmark problem descriptions

All the benchmark have n = 2 random variables and m = 2 decision variables. Random
variables follow independent normal distributions. Number of constraints q modelling the safety
region, initial domain of random and decision variables and random variables distributions are
described in Table 6. Details on objective and constraint functions are described below. For
simplicity, we denote zi = xi + yi.

RBO1: This problem is taken and adapted from [1].

f(y) := y2 (47)

g1(x, y) := − z
2
1z2

20
+ 1 (48)

g2(x, y) := z21 + 8z2 − 75 (49)

g3(x, y) := − (z1 + z2 − 5)2

30
− (z1 − z2 − 12)2

120
+ 1 (50)

24 Benjamin Martin et al.

RBO2: This problem is taken from [8].

f(y) := −y2 (51)

g1(x, y) := −(x1 + y1)2 + 1000(x2 + y2) (52)

g2(x, y) := (x1 + y1)− (x2 + y2)− 200 (53)

g3(x, y) := −(x1 + y1) + 3(x2 + y2)− 400 (54)

RBO3: This problem is taken from [1].

f(y) := y21 + y22 (55)

g1(x, y) := −0.2y1y2(x2)2 + x1 (56)

RBO4: This problem is a nonlinear programming problem from the GLOBAL Library, taken
from [19], transformed into a RBO.

f(y) := y1 (57)

g1(x, y) :=
1

4
z1 +

1

2
z2 −

1

16
z21 −

1

16
z22 − 1 (58)

g2(x, y) :=
1

14
z21 +

1

14
z22 + 1− 3

7
z1 −

3

7
z2 (59)

RBO5: The definition of this problem with highly nonlinear safety region is inspired by a
constraint problem from [20]. Here, ε = 0.75.

f(y) := y1 + y2 (60)

g1(x, y) := z81 − (1− ε)z61 + 4z61z
2
2 − (3 + 15ε)z41z

2
2 + 6z41z

4
2 (61)

− (3− 15ε)z21z
4
2 + 4z21z

6
2 − (1 + ε)z62 + z82 (62)

References

1. Y. Aoues and A. Chateauneuf. Benchmark study of numerical methods for reliability-
based design optimization. Structural and Multidisciplinary Optimization, 41(2):277–294,
2010.

2. F. Benhamou, F. Goualard, L. Granvilliers, and J-F. Puget. Revising hull and box con-
sistency. In International Conference on Logic Programming, pages 230–244. MIT press,
1999.

3. F. Benhamou, D. McAllister, and P. Van Hentenryck. CLP(Intervals) Revisited. In In-
ternational Symposium on Logic Programming, pages 124–138, 1994.

4. M. Berz and K. Makino. New methods for high-dimensional verified quadrature. Reliable
Computing, 5(1):13–22, 1999.

5. E. Carvalho. Probabilistic Constraint Reasoning. PhD thesis, Universidade Nova de Lis-
boa, 2012.

6. E. Carvalho, J. Cruz, and P. Barahona. Safe reliability assessment through probabilis-
tic constraint reasoning. In Tomasz Nowakowski et al., editor, Safety and Reliability:
Methodology and Applications, pages 2269 – 2277. CRC Press, 2015.

7. G. Cheng, L. Xu, and L. Jiang. A sequential approximate programming strategy for
reliability-based structural optimization. Computers & Structures, 84(21):1353 – 1367,
2006.

8. K. Deb, S. Gupta, D. Daum, J. Branke, A.K. Mall, and D. Padmanabhan. Reliability-based
optimization using evolutionary algorithms. Evolutionary Computation, IEEE Transac-
tions on, 13(5):1054–1074, Oct 2009.

9. I. Enevoldsen and J.D. Sørensen. Reliability-based optimization in structural engineering.
Structural Safety, 15(3):169 – 196, 1994.

10. A. Goldsztejn, J. Cruz, and E. Carvalho. Convergence analysis and adaptive strategy for
the certified quadrature over a set defined by inequalities. Journal of Computational and
Applied Mathematics, 260:543 – 560, 2014.

Certified B&B for RBO 25

11. F. Goualard. GAOL 3.1.1: Not Just Another Interval Arithmetic Library. Laboratoire
d’Informatique de Nantes-Atlantique, 4.0 edition, October 2006.

12. L. Granvilliers and F. Benhamou. Algorithm 852: RealPaver: an interval solver using
constraint satisfaction techniques. ACM Transactions Mathematical Software, 32(1):138–
156, 2006.

13. E. Hansen and G. W. Walster. Global Optimization Using Interval Analysis - Revised
And Expanded. CRC Press, 2003.

14. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis with Examples
in Parameter and State Estimation, Robust Control and Robotics. Springer-Verlag, 2001.

15. R. B. Kearfott. Interval Computations: Introduction, Uses, and Resources. Euromath,
Bulletin 2(1):95–112, 1996.

16. R. Baker Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic
Publishers, 1996.

17. N. Kuschel and R. Rackwitz. Two basic problems in reliability-based structural optimiza-
tion. Mathematical Methods of Operations Research, 46(3):309–333, 1997.

18. O. Lhomme. Consistency Techniques for Numeric CSPs. In International Joint Conference
on Artificial Intelligence, pages 232–238, 1993.

19. C. D. Maranas and C. A. Floudas. Global optimization in generalized geometric program-
ming. Computers & Chemical Engineering, 21(4):351 – 369, 1997.

20. B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. Certified parallelotope contin-
uation for one-manifolds. SIAM Journal on Numerical Analysis, 51(6):3373–3401, 2013.

21. R. Moore. Interval Analysis. Prentice-Hall, 1966.
22. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press,

1991.
23. A. Neumaier. Complete search in continuous global optimization and constraint satisfac-

tion. Acta Numerica, 13:271–369, 5 2004.
24. N. J. Oliemann. Methods for robustness programming. PhD thesis, Wageningen University,

2008.
25. S. Rahman and D. Wei. Design sensitivity and reliability-based structural optimization by

univariate decomposition. Structural and Multidisciplinary Optimization, 35(3):245–261,
2008.

26. G. Trombettoni, I. Araya, B. Neveu, and G. Chabert. Inner regions and interval lineariza-
tions for global optimization. In AAAI Conference on Artificial Intelligence, 2011.

27. M. A. Valdebenito and G. I. Schuller. A survey on approaches for reliability-based opti-
mization. Structural and Multidisciplinary Optimization, 42(5):645–663, 2010.

28. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language for Global
Optimization. MIT press, 1997.

29. B. D. Youn, K. K. Choi, R.-J. Yang, and L. Gu. Reliability-based design optimization
for crashworthiness of vehicle side impact. Structural and Multidisciplinary Optimization,
26(3-4):272–283, 2004.

30. Y. M. Zhang, X. D. He, Q. L. Liu, and B. C. Wen. An approach of robust reliability design
for mechanical components. Proceedings of the Institution of Mechanical Engineers, Part
E: Journal of Process Mechanical Engineering, 219(3):275–283, 2005.

